Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (4): 351-357    DOI: 10.11902/1005.4537.2019.113
Current Issue | Archive | Adv Search |
Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid
JIA Yizheng1, WANG Baojie2, ZHAO Mingjun2, XU Daokui3()
1. Innovation and Practice Base for Postdoctors, Sichuan College of Architectural Technology, Deyang 618000, China
2. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
3. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(4253KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of an as-extruded Mg-6Zn-1.2Y-0.8Nd alloy before and after solid solution (T4) treatment was assessed comparatively in Hank's solution by means of hydrogen evolution examination, electrochemical tests and corrosion morphologies characterization. The results showed that after being solution treated at 475 ℃ for 4 h, the corrosion resistance of the alloy was improved. In addition, when the pre-soaking time was less than 24 h, the corrosion resistance of the alloy before and after T4 treatment all increased with the pre-soaking time. However, when the pre-soaking time was 48 h, the corrosion resistance of the differently treated alloys was reduced. The hydrogen evolution data showed that the hydrogen evolution rate of the T4 alloy was 0.75 times as high as that of the as-extruded ones. As the corrosion morphology of different treated alloys was compared, it can be seen that the corrosion attack on the surface of as-extruded alloy was much severe with deeper corrosion pits.

Key words:  magnesium alloy      pre-soaking      hydrogen evolution      pitting      solid solution treatment     
Received:  26 July 2019     
ZTFLH:  TG172.5  
Fund: National Natural Science Foundation of China(51701129);National Natural Science Foundation of China(51871211);Key Technology R&D Program of Deyang City Government of China(2014ZZ051);Postdoctoral Start Fund of Shenyang Ligong University(10500010006)
Corresponding Authors:  XU Daokui     E-mail:  dkxu@imr.ac.cn

Cite this article: 

JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 351-357.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.113     OR     https://www.jcscp.org/EN/Y2020/V40/I4/351

Fig.1  SEM (a, b) and OM (c, d) images of as-extruded Mg-6Zn-1.2Y-0.8Nd alloy without (a, c) and with (b, d) solid solution treatment
Fig.2  Hydrogen evolution curves of as-extruded and final T4 treated Mg-6Zn-1.2Y-0.8Nd alloy in Hank's solution
Fig.3  Polarization curves of as-extruded (a) and final T4 treated (b) Mg-6Zn-1.2Y-0.8Nd alloy pre-immersed in Hank's solution for different time
ConditionPre-immersion time / hEcorrVSCEIcorr10-3 mA·cm-2
Before T40-1.574±0.157.9±0.5
After T40-1.572±0.154.8±0.2
Before T42-1.581±0.205.0±0.3
After T42-1.624±0.153.6±0.2
Before T44-1.525±0.104.1±0.3
After T44-1.625±0.153.1±0.3
Before T48-1.612±0.103.4±0.3
After T48-1.606±0.152.0±0.1
Before T424-1.620±0.252.2±0.2
After T424-1.568±0.151.2±0.1
Before T448-1.633±0.102.9±0.1
After T448-1.584±0.151.9±0.1
Table 1  Fitted parameters of polarization curves of as-extruded Mg-6Zn-1.2Y-0.8Nd alloy before and after T4 treatment
Fig.4  Surface corrosion morphologies and 3D images of the as-extruded Mg-6Zn-1.2Y-0.8Nd alloy before and after pre-immersion in Hank's solution for 4 h (a), 24 h (b) and 48 h (c)
Fig.5  Surface corrosion morphologies and 3D images of the T4-treated Mg-6Zn-1.2Y-0.8Nd alloy before and after pre-immersion in Hank's solution for 4 h (a), 24 h (b) and 48 h (c)
[1] Yan Y T, Tan L L, Xiong D S, et al. Research progress in magnesium-based metals for medical applications [J]. Mater. Rev., 2008, 22(1): 110
(颜廷亭, 谭丽丽, 熊党生等. 医用镁金属材料的研究进展 [J]. 材料导报, 2008, 22(1): 110)
[2] Huang J J, Yang K. Research on magnesium alloys for bio-medical applications [J]. Mater. Rev., 2006, 20(4): 67
(黄晶晶, 杨柯. 镁合金的生物医用研究 [J]. 材料导报, 2006, 20(4): 67)
[3] El-Taib H F, Shehata O S, Tantawy N S. Degradation behaviour of AZ80E magnesium alloy exposed to phosphate buffer saline medium [J]. Corros. Sci., 2014, 86: 285
doi: 10.1016/j.corsci.2014.06.008
[4] Zhang E L, He W W, Du H, et al. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content [J]. Mater. Sci. Eng., 2008, A488: 102
[5] Huang J J, Ren Y B, Zhang B C, et al. Study on biocompatility of magnesium and its alloys [J]. Rare Met. Mater. Eng., 2007, 36: 1102
(黄晶晶, 任伊宾, 张炳春等. 镁及镁合金的生物相容性研究 [J]. 稀有金属材料与工程, 2007, 36: 1102)
[6] Yang K, Tan L L, Ren Y B, et al. Study on biodegradation behavior of AZ31 magnesium alloy [J]. Mater. China, 2009, 28(2): 26
(杨柯, 谭丽丽, 任伊宾等. AZ31镁合金的生物降解行为研究 [J]. 中国材料进展. 2009, 28(2): 26)
[7] Yuan G Y, Zhang X B, Niu J L, et al. Research progress of new type of degradable biomedical magnesium alloys JDBM [J]. Chin. J Nonferrous Met., 2011, 21: 2476
doi: 10.1016/S1003-6326(11)61039-X
(袁广银, 章晓波, 牛佳林等. 新型可降解生物医用镁合金JDBM的研究进展 [J]. 中国有色金属学报, 2011, 21: 2476))
[8] He K, Liu K, Daviglus M L, et al. Magnesium intake and incidence of metabolic syndrome among young adults [J]. Circulation, 2006, 113: 1675
doi: 10.1161/CIRCULATIONAHA.105.588327 pmid: 16567569
[9] Bae Y J, Choi M K. Magnesium intake and its relevance with antioxidant capacity in Korean adults [J]. Biol. Trace Elem. Res., 2011, 143: 213
doi: 10.1007/s12011-010-8883-y
[10] Zreiqat H, Howlett C R, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants [J]. J. Biomed. Mater. Res., 2002, 62: 175
doi: 10.1002/jbm.10270 pmid: 12209937
[11] Vormann J. Magnesium: Nutrition and metabolism [J]. Mol. Aspects Med., 2003, 24: 27
doi: 10.1016/s0098-2997(02)00089-4 pmid: 12537987
[12] Zhang X B, Ma Q L, Ba Z X, et al. Microstructure and corrosion behaviour in simulated body fluid of solution treated Mg-Nd-Gd-Sr-Zn-Zr alloys [J]. Rare Met. Mater. Eng., 2017, 46: 1156
(章晓波, 马青龙, 巴志新等. 固溶处理态Mg-Nd-Gd-Sr-Zn-Zr镁合金的显微组织及其在模拟体液中的腐蚀行为 [J]. 稀有金属材料与工程, 2017, 46: 1156)
[13] Zhang X B, Mao L, Yuan G Y, et al. Performances of biodegradable Mg-Nd-Zn-Zr magnesium alloy for cardiovascular stent [J]. Rare Met. Mater. Eng., 2013, 42: 1300
(章晓波, 毛琳, 袁广银等. 心血管支架用Mg-Nd-Zn-Zr生物可降解镁合金的性能研究 [J]. 稀有金属材料与工程, 2013, 42: 1300)
[14] Zhang X B, Yuan G Y, Wang Z Z. Effects of extrusion ratio on microstructure, mechanical and corrosion properties of biodegradable Mg-Nd-Zn-Zr alloy [J]. Mater. Sci. Technol., 2013, 29: 111
doi: 10.1179/1743284712Y.0000000107
[15] Kang Y Y, Du B N, Li Y M, et al. Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment [J]. J. Mater. Sci. Technol., 2019, 35: 6
doi: 10.1016/j.jmst.2018.09.020
[16] Jing S T. Simulation for the degradation process of Mg-Zn-Y-Nd alloy coronary stent [D]. Zhengzhou: hengzhou University, 2017
(井帅涛. Mg-Zn-Y-Nd合金冠脉支架降解过程的模拟 [D]. 郑州: 郑州大学, 2017)
[17] Lu X L, Yao X L, Li Y M. Microstructure and modification of Nd and Zn trace elements in a Mg-Zn-Y-Nd vascular alloy stent [J]. Chin. J. Tissue Eng. Res., 2017, 21: 1571
(鲁雪丽, 姚新亮, 李彦明. Nd, Zn微量元素在Mg-Zn-Y-Nd血管合金支架中组织学特性和改性的变化 [J]. 中国组织工程研究, 2017, 21: 1571)
[18] Liu Q. Research on the microstructure and property of ultrafine-grained Mg-Zn-Y-Nd alloy for vascular stent application [D]. Zhengzhou: Zhengzhou University, 2014
(刘茜. 血管支架用超细晶Mg-Zn-Y-Nd合金组织及性能的研究 [D]. 郑州: 郑州大学, 2014)
[19] Kang Y Y, Du B N, Li Y M, et al. Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment [J]. J. Mater. Sci. Technol., 2019, 35: 6
doi: 10.1016/j.jmst.2018.09.020
[20] Wang B J, Xu D K, Sun J, et al. Effect of grain structure on the stress corrosion cracking (SCC) behavior of an as-extruded Mg-Zn-Zr alloy [J]. Corros. Sci., 2019, 157: 347
doi: 10.1016/j.corsci.2019.06.017
[21] Wang B J, Xu D K, Wang S D, et al. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Int. J. Fatigue, 2019, 120: 46
doi: 10.1016/j.ijfatigue.2018.10.019
[22] Wang B J, Xu D K, Xin Y C, et al. High corrosion resistance and weak corrosion anisotropy of an as-rolled Mg-3Al-1Zn (in wt.%) alloy with strong crystallographic texture [J]. Sci. Rep., 2017, 7: 16014
doi: 10.1038/s41598-017-16351-z pmid: 29167520
[23] Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 463
(郏义征, 赵明君, 程世婧等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 463)
[24] Shi Z M, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation [J]. Corros. Sci., 2010, 52: 579
doi: 10.1016/j.corsci.2009.10.016
[25] Song G L, Atrens A. Understanding magnesium corrosion-A framework for improved alloy performance [J]. Adv. Eng. Mater., 2003, 5: 837
doi: 10.1002/(ISSN)1527-2648
[26] Wang B J, Xu D K, Dong J H, et al. Effect of corrosion production film on the in vitro degradation behavior of Mg-3%Al-1%Zn (in wt.%) alloy in Hank's solution [J]. J. Mater. Sci. Technol., 2018, 34: 1756
doi: 10.1016/j.jmst.2018.02.013
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[8] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[9] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[10] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[12] OUYANG Yuejun,HU Ting,WANG Jiayin,XIE Zhihui. Electrochemical Deposition and Characterization of Layered Double Hydroxide Film on Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[13] WANG Biao,DU Nan,ZHANG Hao,WANG Shuaixing,ZHAO Qing. Accelerating Effect of Pitting Corrosion Products on Metastable Pitting Initiation and the Stable Pitting Growth of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[14] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
No Suggested Reading articles found!