Please wait a minute...
J Chin Soc Corr Pro  1999, Vol. 19 Issue (2): 95-99     DOI:
Research Report Current Issue | Archive | Adv Search |
APPLICATION OF FREE CORROSION POTENTIAL TO PREDICT CORROSION DAMAGE OF LY12CZ ALUMINUM ALLOY
Weijie Xie;;;
北京航空航天大学材料科学与工程系
Download:  PDF(106KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Maximum corrosion depth measurement can evaluate corrosion damage of aluminum alloy precisely.Unfortunately,this kind of method is destructive.To find a non-destructuve and in situ method which can be used as practical and accelerated corrosion test,an electrochemical method-free corrosion potential measurement was developed.EXCO test was carried out according to HB 5455 standard.Free corrosion potential and maximum corrosion depth of LY12CZ aluminum alloy were measured.The kinetics law of the aluminum alloy corroded in EXCO solution can be divided into two segments.In the earlier stage its corrosion rate is faster while in the later stage it becomes slower and keeps constant.Free corrosion potential of the alloy increases with immersion time at first,and then decreases exponentially.The relationships between free corrosion potential and maximum corrosion depth of the aluminum alloy was established.Where D is the maximum xorrosion depth,E is the free corrosion potential and t is immersion time.Thus by measuring the free corrosion potential of LY12CZ aluminum alloy,the maximum corrosion depth can be evaluated and its corrosion damage can be predicted.
Key words:  free corrosion potential      aluminum alloy      corrosion      predication      
Received:  19 July 2005     
Corresponding Authors:  Weijie Xie   

Cite this article: 

Weijie Xie. APPLICATION OF FREE CORROSION POTENTIAL TO PREDICT CORROSION DAMAGE OF LY12CZ ALUMINUM ALLOY. J Chin Soc Corr Pro, 1999, 19(2): 95-99 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1999/V19/I2/95

1 Muto I, Sato E, Ito S. ASTM STP 1194, Philadelphia: 1994. 382
2 Macdonald D D, Urquidi-Macdonald M, Lolcania J. ASTM STP 1194, Philadelphia: 1994. 355
3 Staehle R W. ASTM STP 1194, Philadephia: 1994. 3
4 Sridhar N, Cragnolino G A, Wlton J C, Dunn D. ASTM STP 1194, Philadephia: 1994. 204
5 Silverman D C, Carrico J E. Corrosion, 1988, 44(5): 280
6 谢伟杰.LY12CZ和7075T7351铝合金耐腐蚀寿命预测的探讨[硕士学位论文],北京,北京航空航天大学,1998
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!