Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 493-500    DOI: 10.11902/1005.4537.2021.126
Current Issue | Archive | Adv Search |
Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction
CHEN Hao1, FAN Zhibin2, CHEN Zhijian1,3, ZHOU Xuejie1,3(), ZHENG Penghua1,3, WU Jun1,4
1.Wuhan Institute of Materials Protection Co. Ltd. , Wuhan 430030, China
2.State Grid Shandong Electric Power Research Institute, Jinan 250001, China
3.Wuhan Materials Corrosion National Observation and Research Station, Wuhan 430030, China
4.Yuli Materials Corrosion National Observation and Research Station, Yuli 841500, China
Download:  HTML  PDF(3078KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pitting corrosion behavior and mechanism of ferritic stainless steel 439 in various solutions with different concentration of anions Cl- and HSO3- was studied by means of electrochemical test, X-ray diffractometer, X-ray photoelectron spectroscopy, as well as molecular dynamics simulation. Electrochemical test results show that, the corrosion rate of 439 stainless steel will be significantly increased in solutions with simultaneous presence of Cl- and HSO3- rather than that in solutions containing only one of the two anions. The molecular dynamics simulation results show that, compared with solutions containing only one of the two anions, in solutions of the mixed anions the corrosive ions were adsorbed much strongly to the passive film, and their diffusion coefficient is also significantly improved. The corrosion rate of 439 stainless steel in Cl- containing solutions will gradually increase with the increase of Cl- concentration, whereas after reaching the critical point, the corrosion rate will gradually decrease. However, when Cl- and HSO3- co-exist in the solution, the corrosion of 439 stainless steel is accelerated.

Key words:  439 stainless steel      passivation film      pitting corrosion      electrochemical test      molecular dynamics simulation     
Received:  07 June 2021     
ZTFLH:  TG172.3  
Fund: State Grid Corporation of China Headquarters Technology Project(5200-202016471A-0-0-00)
Corresponding Authors:  ZHOU Xuejie     E-mail:  zhouxj11@163.com
About author:  ZHOU Xuejie, E-mail:zhouxj11@163.com

Cite this article: 

CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 493-500.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.126     OR     https://www.jcscp.org/EN/Y2022/V42/I3/493

Fig.1  Polarization curves (a), Nyqusit diagram (b) and equivalent circuit diagram (c) for 439 stainless steel in NaCl solution with different concentrations
NaCl (aq)EcorrVIcorrμA·cm-2Pitting potential / VPassive areas VRsΩ·cm-2Q1F·cm-2n1R1Ω·cm-2Q2F·cm-2n2R2Ω·cm-2
3.5%-0.0710.1190.3200.23146.941.20×10-50.874.96×1041.93×10-50.654.05×105
6.0%-0.0990.1640.2860.26427.851.22×10-50.911.38×1042.09×10-50.643.67×105
10.0%-0.2180.5180.0920.19018.944.00×10-50.831.21×1045.73×10-50.401.24×105
14.0%-0.1750.5090.1830.23817.134.71×10-50.918.14×1032.74×10-50.662.13×105
18.0%-0.1400.2850.1600.18012.291.62×10-50.928.59×1032.52×10-50.612.71×105
Table 1  Fitting electrochemical parameters of polarization curves and EIS of 439 stainless steel
Fig.2  Cyclic polarization curves of 439 stainless steel in different concentrations of NaHSO3 solutions (a) and NaCl+NaHSO3 mixed solutions (b)
Solution / mol·L-1Ecorr / VIcorr / μA·cm-2Eb / VEp / VEb-Ep / V
0.62 NaCl-0.0710.1190.320------
0.05 NaHSO3-0.0170.0670.7920.3320.460
0.10 NaHSO3-0.0730.1010.7790.3210.459
0.50 NaHSO3-0.0790.1470.6150.2270.388
(0.62+0.05) NaCl+NaHSO3-0.3580.938-0.189-0.490---
(0.62+0.10) NaCl+NaHSO3-0.2820.6130.258-0.491---
(0.62+0.50) NaCl+NaHSO3-0.3230.4050.424-0.444---
Table 2  Characteristic parameters of cyclic polarization curves
Fig.3  Nyquist (a) and Bode (b) diagrams in different concentrations of NaHSO3 solutions and NaCl+NaHSO3 mixed solutions
Solution / (mol·L-1)Rs / Ω·cm-2Q1 / F·cm-2n1R1 / Ω·cm-2Q2 / F·cm-2n2R2 / Ω·cm-2
0.62 NaCl50.171.39×10-50.872.01×1044.08×10-50.652.07×105
0.05 NaHSO3485.701.82×10-50.914.01×1041.37×10-50.457.55×105
0.10 NaHSO3258.402.91×10-50.981.60×1042.81×10-50.753.09×105
0.50 NaHSO364.092.11×10-50.371.36×1042.52×10-50.902.95×105
(0.62+0.05) NaCl+NaHSO340.652.94×10-50.904.24×1032.98×10-50.822.48×104
(0.62+0.10) NaCl+NaHSO338.862.41×10-50.918.15×1033.37×10-50.603.21×104
(0.62+0.50) NaCl+NaHSO327.722.76×10-50.917.70×1033.87×10-50.723.34×104
Table 3  Fitting parameters of EIS based on equivalent circuit
Fig.4  XRD pattern of 439 stainless steel
Fig.5  Full XPS spectrum (a) and fine XPS spectra of Cr2P (b) , Fe2p (c) and O1s (c)
Fig.6  Modeling of three corrosion systems: (a) Fe2O3 (1 1ˉ 2), (b) Cr2O3 (0 0 1), (c) FeO (1 1 1)
Fig.7  Equilibrium criterion of molecular dynamics simulation: (a) energy-time curve; (b) temperature-time curve
Phase0.62 mol/L NaCl0.62 mol/L NaHSO3(0.31+0.31) mol/L (NaCl+NaHSO3)
Cl-HSO3-(Cl-, HSO3-)
Fe2O3-1323.182226-24.479770-1432.066031
Cr2O3-8789.661657-89.576001-7837.384689
FeO-2582.008070-3877.935214-11311.721163
Table 4  Surface interaction energies of corrosion ions and metal oxides (kcal·mol-1)
Phase3.5%NaCl0.62 mol/L NaHSO3(0.31+0.31) mol/L (NaCl+NaHSO3)
Cl-HSO3-Cl-HSO3-
Fe2O32.02×10-53.24×10-51.64×10-52.13×10-5
Cr2O35.86×10-102.23×10-54.32×10-82.82×10-5
FeO4.39×10-51.41×10-57.06×10-58.26×10-6
Table 5  Calculated diffusion coefficients of corrosion ions
1 Ren J H, Chen A Z, Li Z G, et al. Corrosion resistance evaluation of 439 ultra-pure ferritic stainless steel [J]. China Metall., 2018, 28(3): 35
任娟红, 陈安忠, 李照国等. 439超纯铁素体不锈钢耐蚀性评价 [J]. 中国冶金, 2018, 28(3): 35
2 Qin H P, Chen H T, Lang Y P, et al. Effects of non-metallic inclusions on pitting corrosion resistance of 439M ferritic stainless steel [J]. Hot Work. Technol., 2016, 45(10): 89
覃怀鹏, 陈海涛, 郎宇平等. 非金属夹杂物对439M铁素体不锈钢耐点蚀性能的影响 [J]. 热加工工艺, 2016, 45(10): 89
3 Loto R T. Electrochemical corrosion characteristics of 439 ferritic, 301 austenitic, S32101 duplex and 420 martensitic stainless steel in sulfuric acid/NaCl solution [J]. J. Bio. Tribo. Corros., 2017, 3: 24
4 Song D N, Bai Y Y, Yu X L. Status in quo and development on the Chinese stainless steel industry [J]. Sichuan Nonferrous Met., 2009, (1): 1
宋丹娜, 白艳英, 于秀玲. 浅谈中国不锈钢产业的现状及可持续发展 [J]. 四川有色金属, 2009, (1): 1
5 Hu Z Z, Zhou X J, Wu J, et al. Initial corrosion behavior of carbon steel Q235 in petrochemical atmospheric environment [J]. Equip. Environ. Eng., 2011, 8(3): 30
胡章枝, 周学杰, 吴军等. Q235碳钢在石化大气环境中初期腐蚀行为 [J]. 装备环境工程, 2011, 8(3): 30
6 Cao C, Zheng S S, Hu W B, et al. Review of research on mechanical properties of steel structure under atmospheric environment corrosion [J]. Mater. Rev., 2020, 34(11): 162
曹琛, 郑山锁, 胡卫兵等. 大气环境腐蚀下钢结构力学性能研究综述 [J]. 材料导报, 2020, 34(11): 162
7 Wang L Y, Wang X T, Sun H F, et al. Study of SO2 influence on metal corrosion in atmospheric environment [J]. Equip. Environ. Eng., 2011, 8(2): 62
王丽媛, 王秀通, 孙好芬等. 大气环境中SO2影响金属腐蚀的研究进展 [J]. 装备环境工程, 2011, 8(2): 62
8 Wei X, Dong J H, Tong J, et al. Influence of temperature on pitting corrosion resistance of Cr26Mo1 ultra pure high chromium ferrite stainless steel in 3.5%NaCl solution [J]. Acta Metall. Sin., 2012, 48: 502
魏欣, 董俊华, 佟健等. 温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响 [J]. 金属学报, 2012, 48: 502
9 Hua H Z, Zhao G Z, Li L X, et al. An XPS study of passive film and its breakdown on ferritic stainiess steel in Cl--containing neutral solution [J]. J. Chin. Soc. Corros. Prot., 1987, 7: 233
华惠中, 赵国珍, 李丽霞等. Fe-Cr-Mo系铁素体不锈钢在中性氯离子介质中钝化膜及其破坏的XPS研究 [J]. 中国腐蚀与防护学报, 1987, 7: 233
10 Morioka S, Sawada Y, Shiobara K. Effect of SO2 gas on pitting corrosion of austenitic stainless steel [J]. Corros. Eng. Dig., 1965, 14: 535
11 Guo L, Zhang S T, Li W P, et al. Experimental and computational studies of two antibacterial drugs as corrosion inhibitors for mild steel in acid media [J]. Mater. Corros., 2014, 65: 935
12 Susmikanti M, Andiwijayakusuma D, Ghofir, et al. Molecular dynamics simulation to studying the effect of molybdenum in stainless steel on the corrosion resistance by lead-bismuth [J]. AIP Conf. Proc., 2012, 1448: 185
13 Razaghi Z, Rezaei M. Corrosion mechanism of sulfate, chloride, and tetrafluoroborate ions interacted with Ni-19wt% Cr coating: A combined experimental study and molecular dynamics simulation [J]. J. Mol. Liq., 2020, 319: 114243
14 Wang Z W, Li B, Lin Q B, et al. Molecular dynamics simulation on diffusion of five kinds of chemical additives in polypropylene [J]. Packag. Technol. Sci., 2018, 31: 277
15 Liu L F, Liu J X, Zhang J, et al. Molecular dynamics simulation of the corrosive medium diffusion behavior inhibited by the corrosion inhibitor membranes [J]. Chem. J. Chin. Univ., 2010, 31: 537
刘林法, 刘金祥, 张军等. 缓蚀剂膜抑制腐蚀介质扩散行为的分子动力学模拟 [J]. 高等学校化学学报, 2010, 31: 537
[1] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[2] XIN Yechun, XU Wei, ZHAO Dongyang, ZHANG Bo. Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[3] CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[4] ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[5] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[6] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[7] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[8] CUI Haoran, LIANG Ping, SHI Yanhua, YANG Zhongkui, HAN Li. Effect of Denitration Agent Concentration on Corrosion Resistance and Critical Pitting Temperature of S2205 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[9] SUN Weisong, YU Sirong, GAO Song, YAO Xinkuan, XU Hailiang, QIAN Bing, WANG Bingzi. Molecular Dynamics Simulation of Water Molecule Diffusion in Graphene-reinforced Epoxy Resin Anticorrosive Coatings[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[10] RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[11] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[12] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[13] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[14] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[15] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
No Suggested Reading articles found!