Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 501-506    DOI: 10.11902/1005.4537.2021.117
Current Issue | Archive | Adv Search |
Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution
YANG Yong1(), ZHANG Qingbao1, ZHU Wancheng2, LUO Yanlong1
1.China Special Equipment Inspection and Research Institute, Beijing 100029, China
2.Yingmai Oil and Gas Development Department, Petro China Tarim Oilfield Company, Korla 841000, China
Download:  HTML  PDF(8296KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnetic flux leakage internal inspection is the main method for detecting metal damage in oil and gas pipelines. After the magnetic flux leakage testing is implemented, there will exist a residual magnetic field in the pipeline for a long time. The influence of such residual magnetic field on the corrosion behavior of the pipeline steel is not completely clear yet. Therefore, the influence of different magnetic field intensities (0.9, 1.9 and 2.8 kA/m respectively) on the corrosion behavior of X52 pipeline steel in 3.5%NaCl solution was investigated by means of open circuit potential, polarization curves, electrochemical impedance spectroscopy and corrosion morphology observation techniques. The results indicated that the presence of magnetic field can shift negatively the corrosion potential, increased the corrosion current density, reduced the charge transfer resistance, and changed the corrosion morphology to a certain extent. The greater the magnetic field intensity, the greater the influence on the electrochemical corrosion behavior. Through mechanism analysis, it follows that the influence of magnetic field on the electrochemical reaction process may comprehensively be determined by multiple factors such as the magnetic flux intensity near the electrode surface, the magnetic field gradient, the ion-magnetism and -concentration in the electrolyte. The Loren magnetic force can accelerate the diffusion of Fe2+ and reduce the thickness of the electric double layer, while the Kelvin force can increase the oxygen content of the electrode interface, all the above factors could promote the corrosion process, the effect of which may be stronger than the corrosion inhibition effect induced by that the Kelvin force causing Fe2+ to accumulate on the electrode surface, so that the electrochemical corrosion process was generally promoted.

Key words:  magnetic field      magnetic flux intensity      3.5%NaCl solution      corrosion behavior     
Received:  24 May 2021     
ZTFLH:  TG174  
Fund: Science and Technology Plan Projects of State Administration for Market Regulation(2019MK136);CSEI Research Program(2019-Youth-03)
Corresponding Authors:  YANG Yong     E-mail:  39530354@qq.com
About author:  YANG Yong, E-mail: 39530354@qq.com

Cite this article: 

YANG Yong, ZHANG Qingbao, ZHU Wancheng, LUO Yanlong. Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 501-506.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.117     OR     https://www.jcscp.org/EN/Y2022/V42/I3/501

Fig.1  Effect of magnetic field on the corrosion potential of X52 pipeline steel: (a) corrosion potential of samples under different magnetic field strengths, (b) the change of sample corrosion potential with different magnetic field strength
Fig.2  Potentiostatic (a) and potentiodynamic (b) polarization curves with magnetic fields
Fig.3  Nyquist (a) and Bode (b) plots of EIS with magnetic fields and equivalent circuit of EIS (c)
H / kA/mRs / Ω·cm2Ydl / S·sn·cm-2ndlRt / Ω·cm2
09.41.55×10-30.69301182
0.911.01.74×10-30.7316827
1.99.12.11×10-30.7507562
2.89.52.19×10-30.7793369
Table 1  Equivalent circuit ?tting for the EIS data of samples in NaCl Solution
Fig.4  Optical photographs of X52 steel in 3.5%NaCl solution for 10 d under 0 kA/m (a1, a2), 0.9 kA/m (b1, b2) and 1.9 kA/m (c1, c2) magnetic fields
Fig.5  Schematic diagram of the magnetic flux intensity distribution on the surface of the sample
1 Nie Z W, Huang J, Yu Y Z, et al. Construction progress and existing problems of intelligent pipeline network [J]. Oil Gas Storage Transp., 2020, 39: 16
聂中文, 黄晶, 于永志等. 智慧管网建设进展及存在问题 [J]. 油气储运, 2020, 39: 16
2 Feng S, Ma X Y, Lei Y, et al. Ultrasonic echo detection technology for coating defects on submarine pipeline [J]. Oil Gas Storage Transp., 2020, 39: 354
冯胜, 马晓阳, 雷毅等. 海底管道外涂层缺陷超声回波检测技术 [J]. 油气储运, 2020, 39: 354
3 Yang L J, Geng H, Gao S W. Magnetic flux leakage internal detection technology of the long distance oil pipeline [J]. Chin. J. Sci. Instrum., 2016, 37: 1736
杨理践, 耿浩, 高松巍. 长输油气管道漏磁内检测技术 [J]. 仪器仪表学报, 2016, 37: 1736
4 Jackson J E, Lasseigne-Jackson A N, Sanchez F J, et al. The influence of magnetization on corrosion in pipeline steels [A]. 2006 International Pipeline Conference [C]. Alberta, 2006: 921
5 Wang C, Chen J M. The effect of strong magnetic field on corrosion behavior of iron [J]. J. Chin. Soc. Corros. Prot., 1994, 14: 123
王晨, 陈俊明. 磁场对铁腐蚀过程中阴极析氢和阳极溶解的影响 [J]. 中国腐蚀与防护学报, 1994, 14: 123
6 Lv Z P, Chen J M. Effect of magnetic field and Cl- on anodic polarization behavior of iron in neutral 0.5 mol/L Na2SO4 solution [J]. J. Chin. Soc. Corros. Prot., 1997, 17: 25
吕战鹏, 陈俊明. 磁场和Cl-对铁在中性Na2SO4溶液中阳极极化行为的影响 [J]. 中国腐蚀与防护学报, 1997, 17: 25
7 Lv Z P, Huang D L, Yang W. Magnetic field induced variation of open circuit state of iron in chloride solutions [J]. Corros. Prot., 2002, 23: 185
吕战鹏, 黄德伦, 杨武. 磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化 [J]. 腐蚀与防护, 2002, 23: 185
8 Cai S W, Ning F, Tang Y J, et al. Effect of magnetic field on anodic dissolution of iron in sodium perchlorate solution at different potentials [J]. Corros. Prot., 2020, 41(8): 1
蔡爽巍, 宁飞, 唐元杰等. 磁场对铁在不同电位高氯酸钠溶液中阳极溶解的影响 [J]. 腐蚀与防护, 2020, 41(8): 1
9 Yu X, Zhu X N, Li X J, et al. Effects of magnetic fieldon electrochemical behavior of AZ31B in NaCl solution [J]. Mod. Salt Chem. Ind., 2019, 46(3): 8
俞翔, 朱鑫楠, 李希娇等. 磁场对AZ31B在NaCl溶液中电化学行为的影响 [J]. 现代盐化工, 2019, 46(3): 8
10 Liu R Z. Effect of magnetic field on corrosion [J]. Plat. Finish., 1985, (6): 8
刘仁志. 磁场对腐蚀的影响 [J]. 电镀与精饰, 1985, (6): 8
11 Lv Z P, Shoji T, Yang W. Anomalous surface morphology of iron generated after anodic dissolution under magnetic fields [J]. Corros. Sci., 2010, 52: 2680
12 Lv Z P, Huang D L, Yang W, et al. Effects of an applied magnetic field on the dissolution and passivation of iron in sulphuric acid [J]. Corros. Sci., 2003, 45: 2233
13 Ghabashy M A. Effect of magnetic field on the rate of steel corrosion in aqueous solutions [J]. Anti-Corros. Methods Mater., 1988, 35: 12
14 Zhang K N, Wu M, Xie F, et al. Effect of magnetic field on corrosion of X80 pipeline steel in meadow soil at Shenyang area [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 148
张康南, 吴明, 谢飞等. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 148
15 Hui H J, Dai Q S, Chen K, et al. Effect of magnetic field on corrosion of X60 pipeline steel in soil of Changsha area [J]. Corros. Prot., 2019, 40: 474
惠海军, 戴乾生, 陈凯等. 磁场对X60钢材料在长沙地区土壤中腐蚀行为的影响 [J]. 腐蚀与防护, 2019, 40: 474
16 Espina-Hernández J H, Caleyo F, Venegas V, et al. Pitting corrosion in low carbon steel influenced by remanent magnetization [J]. Corros. Sci., 2011, 53: 3100
17 Wei X Y, Masoumeh M, Yang L J, et al. Influence of magnetic field on corrosion of pure Cu in artificial seawater with multispecies aerobic bacteria [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 484
卫晓阳, Masoumeh M, 杨丽景等. 磁场对纯Cu微生物腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 484
18 Sueptitz R, Tschulik K, Uhlemann M, et al. Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions [J]. Corros. Sci., 2011, 53: 3222
19 Lv Z P, Huang C B, Huang D L, et al. Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behaviour of iron in weakly alkaline solutions with or without halides [J]. Corros. Sci., 2006, 48: 3049
20 Aaboubi O, Chopart J P, Douglade J, et al. Magnetic field effects on mass transport [J]. J. Electrochem. Soc., 1990, 137: 1796
21 Hinds G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport [J]. Electrochem. Commun., 2001, 3: 215
22 Sueptitz R, Tschulik K, Uhlemann M, et al. Magnetic field effects on the active dissolution of iron [J]. Electrochim. Acta, 2011, 56: 5866
23 Sueptitz R, Koza J, Uhlemann M, et al. Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions [J]. Electrochim. Acta, 2009, 54: 2229
24 Wang X P, Zhao J J, Hu Y P, et al. Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3+NaCl solution [J]. Electrochim. Acta, 2014, 117: 113
25 Lioubashevski O, Katz E, Willner I. Effects of magnetic field Directedorthogonally to surfaces on electrochemical processes [J]. J. Phys. Chem., 2007, 111C: 6024
26 Li X J, Zhang M, Yuan B Y, et al. Effects of the magnetic field on the corrosion dissolution of the 304 SS│FeCl3 system [J]. Electrochim. Acta, 2016, 222: 619
27 Grossinger R, Keplinger F, Mehmood N, et al. Magnetic and microstructural investigations of pipeline steels [J]. IEEE Trans. Magn., 2008, 44: 3277
28 Devos O, Aaboubi O, Chopart J P, et al. Is there a magnetic field effect on electrochemical kinetics? [J]. J. Phys. Chem., 2000, 104A: 1544
29 Grant K M, Hemmert J W, White H S. Magnetic field-controlled microfluidic transport [J]. J. Am. Chem. Soc., 2002, 124: 462
30 Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Lorentz force. A mini-review [J]. Electrochem. Commun., 2014, 42: 38
31 Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Kelvin force. A mini-review [J]. Electrochem. Commun., 2014, 42: 42
32 Kamesui G, Nishikawa K, Matsushima H, et al. In situ observation of Cu2+ concentration profile during Cu dissolution in magnetic field [J]. J. Electrochem. Soc., 2021, 168: 031507
33 Wu M, Zong Y, Xie F, et al. Effect of chloridion concentration on corrosion behavior of Q235 and X70 pipeline steel in simulated seawater [J]. Heat Treat. Met., 2017, 42(2): 62
吴明, 宗月, 谢飞等. 模拟海水中Cl-浓度对Q235和X70管线钢腐蚀行为的影响 [J]. 金属热处理, 2017, 42(2): 62
[1] ZHANG Keqian, ZHANG Hua, LI Yang, HONG Ye, HE Cheng. Corrosion of Electrode Materials in Joule Heated Melter[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[2] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[3] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[4] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[5] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[6] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[7] QIAO Zhongli, WANG Ling, SHI Yanhua, YANG Zongkui. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[8] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[9] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[10] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[11] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[12] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[13] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[14] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[15] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
No Suggested Reading articles found!