|
|
Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution |
YANG Yong1( ), ZHANG Qingbao1, ZHU Wancheng2, LUO Yanlong1 |
1.China Special Equipment Inspection and Research Institute, Beijing 100029, China 2.Yingmai Oil and Gas Development Department, Petro China Tarim Oilfield Company, Korla 841000, China |
|
|
Abstract Magnetic flux leakage internal inspection is the main method for detecting metal damage in oil and gas pipelines. After the magnetic flux leakage testing is implemented, there will exist a residual magnetic field in the pipeline for a long time. The influence of such residual magnetic field on the corrosion behavior of the pipeline steel is not completely clear yet. Therefore, the influence of different magnetic field intensities (0.9, 1.9 and 2.8 kA/m respectively) on the corrosion behavior of X52 pipeline steel in 3.5%NaCl solution was investigated by means of open circuit potential, polarization curves, electrochemical impedance spectroscopy and corrosion morphology observation techniques. The results indicated that the presence of magnetic field can shift negatively the corrosion potential, increased the corrosion current density, reduced the charge transfer resistance, and changed the corrosion morphology to a certain extent. The greater the magnetic field intensity, the greater the influence on the electrochemical corrosion behavior. Through mechanism analysis, it follows that the influence of magnetic field on the electrochemical reaction process may comprehensively be determined by multiple factors such as the magnetic flux intensity near the electrode surface, the magnetic field gradient, the ion-magnetism and -concentration in the electrolyte. The Loren magnetic force can accelerate the diffusion of Fe2+ and reduce the thickness of the electric double layer, while the Kelvin force can increase the oxygen content of the electrode interface, all the above factors could promote the corrosion process, the effect of which may be stronger than the corrosion inhibition effect induced by that the Kelvin force causing Fe2+ to accumulate on the electrode surface, so that the electrochemical corrosion process was generally promoted.
|
Received: 24 May 2021
|
|
Fund: Science and Technology Plan Projects of State Administration for Market Regulation(2019MK136);CSEI Research Program(2019-Youth-03) |
Corresponding Authors:
YANG Yong
E-mail: 39530354@qq.com
|
About author: YANG Yong, E-mail: 39530354@qq.com
|
1 |
Nie Z W, Huang J, Yu Y Z, et al. Construction progress and existing problems of intelligent pipeline network [J]. Oil Gas Storage Transp., 2020, 39: 16
|
|
聂中文, 黄晶, 于永志等. 智慧管网建设进展及存在问题 [J]. 油气储运, 2020, 39: 16
|
2 |
Feng S, Ma X Y, Lei Y, et al. Ultrasonic echo detection technology for coating defects on submarine pipeline [J]. Oil Gas Storage Transp., 2020, 39: 354
|
|
冯胜, 马晓阳, 雷毅等. 海底管道外涂层缺陷超声回波检测技术 [J]. 油气储运, 2020, 39: 354
|
3 |
Yang L J, Geng H, Gao S W. Magnetic flux leakage internal detection technology of the long distance oil pipeline [J]. Chin. J. Sci. Instrum., 2016, 37: 1736
|
|
杨理践, 耿浩, 高松巍. 长输油气管道漏磁内检测技术 [J]. 仪器仪表学报, 2016, 37: 1736
|
4 |
Jackson J E, Lasseigne-Jackson A N, Sanchez F J, et al. The influence of magnetization on corrosion in pipeline steels [A]. 2006 International Pipeline Conference [C]. Alberta, 2006: 921
|
5 |
Wang C, Chen J M. The effect of strong magnetic field on corrosion behavior of iron [J]. J. Chin. Soc. Corros. Prot., 1994, 14: 123
|
|
王晨, 陈俊明. 磁场对铁腐蚀过程中阴极析氢和阳极溶解的影响 [J]. 中国腐蚀与防护学报, 1994, 14: 123
|
6 |
Lv Z P, Chen J M. Effect of magnetic field and Cl- on anodic polarization behavior of iron in neutral 0.5 mol/L Na2SO4 solution [J]. J. Chin. Soc. Corros. Prot., 1997, 17: 25
|
|
吕战鹏, 陈俊明. 磁场和Cl-对铁在中性Na2SO4溶液中阳极极化行为的影响 [J]. 中国腐蚀与防护学报, 1997, 17: 25
|
7 |
Lv Z P, Huang D L, Yang W. Magnetic field induced variation of open circuit state of iron in chloride solutions [J]. Corros. Prot., 2002, 23: 185
|
|
吕战鹏, 黄德伦, 杨武. 磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化 [J]. 腐蚀与防护, 2002, 23: 185
|
8 |
Cai S W, Ning F, Tang Y J, et al. Effect of magnetic field on anodic dissolution of iron in sodium perchlorate solution at different potentials [J]. Corros. Prot., 2020, 41(8): 1
|
|
蔡爽巍, 宁飞, 唐元杰等. 磁场对铁在不同电位高氯酸钠溶液中阳极溶解的影响 [J]. 腐蚀与防护, 2020, 41(8): 1
|
9 |
Yu X, Zhu X N, Li X J, et al. Effects of magnetic fieldon electrochemical behavior of AZ31B in NaCl solution [J]. Mod. Salt Chem. Ind., 2019, 46(3): 8
|
|
俞翔, 朱鑫楠, 李希娇等. 磁场对AZ31B在NaCl溶液中电化学行为的影响 [J]. 现代盐化工, 2019, 46(3): 8
|
10 |
Liu R Z. Effect of magnetic field on corrosion [J]. Plat. Finish., 1985, (6): 8
|
|
刘仁志. 磁场对腐蚀的影响 [J]. 电镀与精饰, 1985, (6): 8
|
11 |
Lv Z P, Shoji T, Yang W. Anomalous surface morphology of iron generated after anodic dissolution under magnetic fields [J]. Corros. Sci., 2010, 52: 2680
|
12 |
Lv Z P, Huang D L, Yang W, et al. Effects of an applied magnetic field on the dissolution and passivation of iron in sulphuric acid [J]. Corros. Sci., 2003, 45: 2233
|
13 |
Ghabashy M A. Effect of magnetic field on the rate of steel corrosion in aqueous solutions [J]. Anti-Corros. Methods Mater., 1988, 35: 12
|
14 |
Zhang K N, Wu M, Xie F, et al. Effect of magnetic field on corrosion of X80 pipeline steel in meadow soil at Shenyang area [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 148
|
|
张康南, 吴明, 谢飞等. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 148
|
15 |
Hui H J, Dai Q S, Chen K, et al. Effect of magnetic field on corrosion of X60 pipeline steel in soil of Changsha area [J]. Corros. Prot., 2019, 40: 474
|
|
惠海军, 戴乾生, 陈凯等. 磁场对X60钢材料在长沙地区土壤中腐蚀行为的影响 [J]. 腐蚀与防护, 2019, 40: 474
|
16 |
Espina-Hernández J H, Caleyo F, Venegas V, et al. Pitting corrosion in low carbon steel influenced by remanent magnetization [J]. Corros. Sci., 2011, 53: 3100
|
17 |
Wei X Y, Masoumeh M, Yang L J, et al. Influence of magnetic field on corrosion of pure Cu in artificial seawater with multispecies aerobic bacteria [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 484
|
|
卫晓阳, Masoumeh M, 杨丽景等. 磁场对纯Cu微生物腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 484
|
18 |
Sueptitz R, Tschulik K, Uhlemann M, et al. Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions [J]. Corros. Sci., 2011, 53: 3222
|
19 |
Lv Z P, Huang C B, Huang D L, et al. Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behaviour of iron in weakly alkaline solutions with or without halides [J]. Corros. Sci., 2006, 48: 3049
|
20 |
Aaboubi O, Chopart J P, Douglade J, et al. Magnetic field effects on mass transport [J]. J. Electrochem. Soc., 1990, 137: 1796
|
21 |
Hinds G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport [J]. Electrochem. Commun., 2001, 3: 215
|
22 |
Sueptitz R, Tschulik K, Uhlemann M, et al. Magnetic field effects on the active dissolution of iron [J]. Electrochim. Acta, 2011, 56: 5866
|
23 |
Sueptitz R, Koza J, Uhlemann M, et al. Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions [J]. Electrochim. Acta, 2009, 54: 2229
|
24 |
Wang X P, Zhao J J, Hu Y P, et al. Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3+NaCl solution [J]. Electrochim. Acta, 2014, 117: 113
|
25 |
Lioubashevski O, Katz E, Willner I. Effects of magnetic field Directedorthogonally to surfaces on electrochemical processes [J]. J. Phys. Chem., 2007, 111C: 6024
|
26 |
Li X J, Zhang M, Yuan B Y, et al. Effects of the magnetic field on the corrosion dissolution of the 304 SS│FeCl3 system [J]. Electrochim. Acta, 2016, 222: 619
|
27 |
Grossinger R, Keplinger F, Mehmood N, et al. Magnetic and microstructural investigations of pipeline steels [J]. IEEE Trans. Magn., 2008, 44: 3277
|
28 |
Devos O, Aaboubi O, Chopart J P, et al. Is there a magnetic field effect on electrochemical kinetics? [J]. J. Phys. Chem., 2000, 104A: 1544
|
29 |
Grant K M, Hemmert J W, White H S. Magnetic field-controlled microfluidic transport [J]. J. Am. Chem. Soc., 2002, 124: 462
|
30 |
Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Lorentz force. A mini-review [J]. Electrochem. Commun., 2014, 42: 38
|
31 |
Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Kelvin force. A mini-review [J]. Electrochem. Commun., 2014, 42: 42
|
32 |
Kamesui G, Nishikawa K, Matsushima H, et al. In situ observation of Cu2+ concentration profile during Cu dissolution in magnetic field [J]. J. Electrochem. Soc., 2021, 168: 031507
|
33 |
Wu M, Zong Y, Xie F, et al. Effect of chloridion concentration on corrosion behavior of Q235 and X70 pipeline steel in simulated seawater [J]. Heat Treat. Met., 2017, 42(2): 62
|
|
吴明, 宗月, 谢飞等. 模拟海水中Cl-浓度对Q235和X70管线钢腐蚀行为的影响 [J]. 金属热处理, 2017, 42(2): 62
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|