Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 486-492    DOI: 10.11902/1005.4537.2021.123
Current Issue | Archive | Adv Search |
Effect of Corrosion Damage on Fatigue Behavior of AA7075-T651 Al-alloy
WENG Shuo1,2,3(), YU Jun1, ZHAO Lihui1,2,3, FENG Jinzhi1,2,3, ZHENG Songlin1,2,3
1.School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2.Key Laboratory of Strength and Reliability Evaluation of Auto Mechanical Components for Mechanical Industry, Shanghai 200093, China
3.Shanghai Public Technology Platform for Reliability Evaluation of New Energy Vehicles, Shanghai 200093, China
Download:  HTML  PDF(12606KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fatigue test for the 7075-T651 Al-alloy samples with and without being immersed in 3.5% (mass fraction) NaCl solution for 150 and 500 h, respectively, was carried out, in order to reveal the influence of corrosion damage on the fatigue behavior of the alloy. The results show that compared to the blank alloy samples, the fatigue life of 7075-T651 Al-alloy subjected to immersion corrosion is significantly reduced due to the presence of corrosion damage. The size of corrosion pits in the specimens immersed for 500 h are much large than those for 150 h, but the fatigue life of the two types of specimens with corrosion damage are more or less at the same stress level. Based on the fatigue notch coefficient theory and Stromeyer three-parameter S-N curve formula, the life of the damaged Al-alloy sample was predicted, and the predicted results totally located in the double dispersion band, which indicates that the predicted formula fits well with the results of experimental results.

Key words:  corrosion damage      fatigue life      AA7075-T651Al-alloy     
Received:  31 May 2021     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(52005336);China Postdoctoral Science Foundation(2020M671167);Shanghai Sailing Program(19YF1434400)
Corresponding Authors:  WENG Shuo     E-mail:  wengshuo@usst.edu.cn
About author:  WENG Shuo, E-mail: wengshuo@usst.edu.cn

Cite this article: 

WENG Shuo, YU Jun, ZHAO Lihui, FENG Jinzhi, ZHENG Songlin. Effect of Corrosion Damage on Fatigue Behavior of AA7075-T651 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 486-492.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.123     OR     https://www.jcscp.org/EN/Y2022/V42/I3/486

Fig.1  Optical Microstructure of AA7075-T651 Al-alloy
Fig.2  Detailed sizes of sample used in fatigue tests
Fig.3  Surface corrosion morphologies on the surface of specimens after 500 h: (a) T-L plane; (b) T-S plane, (c) local enlargement on the T-S plane
Fig.4  Cross-sectional morphologies of the specimens after 500 h: (a) macroscopic morphology, (b) local enlargement of T-L plane, (c) local enlargement of T-S plane
Fig.5  S-N curve of fatigue specimens with different immersion times
Specimen typeS-N curve equationcm
As-receivedlgσ=3.50-0.20lgN1017.394.97
150 h specimenlgσ=3.91-0.33lgN1011.843.03
500 h specimenlgσ=3.53-0.25lgN1014.154.01
Table 1  S-N curve equation and material constants
Fig.6  Fracture morphology of the as-received sample crack initiating on the T-L plane (a~d) and at the geometric corner of the original sample (e~h): (a, e) macroscopic fracture morphology; (b, f) crack initiation zone with the direction on the T-L surface; (c, g) crack propagation zone; (d, h) ductile fracture zone
Fig.7  Fracture morphology of 150 h (a~d) and 500 h (e~h) pre-etched sample: (a) macroscopic fracture morphology; (b) T-S surface crack initiation zone; (c) crack propagation zone; (d) ductile fracture zone, (e) macroscopic fracture morphology; (f) corrosion pit initiation zone; (g) fatigue striations; (h) ductile fracture zone
Fig.8  Crack initiation location statist
Stress / MPad / μmc / μmKf
200550404.162.61
200346.67293.332.54
2005854052.24
2001200741.172.67
250507.41174.072.93
250462.5437.52.48
350448.15288.892.68
350488.89340.742.64
350644.17184.052.98
350116.67502.83
Table 2  Corrosion pit geometrical dimension parameters
Fig.9  Comparison of predicted life with experimental data
1 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
2 Chen Y L, Wu S J, Zhang Y, et al. Corrosion behavior and DFR degradation law of 2024-T3 aluminium alloy in different surface state [J]. Equip. Environ. Eng., 2020, 17(6): 44
陈跃良, 吴省均, 张勇等. 不同表面状态2024-T3铝合金腐蚀行为及DFR退化规律 [J]. 装备环境工程, 2020, 17(6): 44
3 Tan X M, Zhang D F, Bian G X, et al. Effect of corrosion damage on fatigue crack initiation mechanism and growth behavior of high strength aluminum alloy [J]. J. Mech. Eng., 2014, 50(22): 76
谭晓明, 张丹峰, 卞贵学等. 腐蚀对新型高强度铝合金疲劳裂纹萌生机制及扩展行为的作用 [J]. 机械工程学报, 2014, 50(22): 76
4 Chen Y L, Bian G X, Yi L, et al. Research on fatigue characteristic and fracture mechanics of aluminum alloy under alternate action of corrosion and fatigue [J]. J. Mech. Eng., 2012, 48(20): 73
陈跃良, 卞贵学, 衣林等. 腐蚀和疲劳交替作用下飞机铝合金疲劳性能及断裂机理研究 [J]. 机械工程学报, 2012, 48(20): 73
5 Sun X G, Wang Z H, Xu X X, et al. Effect of industrial atmospheric environment on corrosion fatigue behavior of Al-Mg-Si alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 501
孙晓光, 王子晗, 徐学旭等. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 501
6 Song H P, Liu C C, Zhang H, et al. Experimental investigation on damage evolution in pre-corroded aluminum alloy 7075-T7651 under fatigue loading [J]. Mater. Sci. Eng., 2021, 799A: 140206.
7 Chen Y P, Zeng B Y, Yu J J, et al. Fatigue life prediction method of pre-corroded aluminum matrix composite [J]. Corros. Prot., 2021, 42(1): 36
陈亚萍, 曾本银, 喻溅鉴等. 预腐蚀铝基复合材料疲劳寿命的预测方法 [J]. 腐蚀与防护, 2021, 42(1): 36
8 Xu L, Yu X, Hui L, et al. Fatigue life prediction of aviation aluminium alloy based on quantitative pre-corrosion damage analysis [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1353
9 Zhan Z X, Yu X, Hu W P, et al. Damage mechanics-based approach for fatigue life prediction of aluminum alloy with pre-corrosion damage [J]. J. Beijing Univ. Aeron. Astron., 2021,
詹志新, 余洵, 胡伟平等. 基于损伤力学的含预腐蚀损伤铝合金的疲劳寿命预测 [J]. 北京航空航天大学学报, 2021,
10 Basquin O H. The exponential law of endurance tests [J]. Am. Soc. Test. Mater., 1910, 10: 625
11 Zhong Q P, Zhao Z H. Fractography [M]. Beijing: Higher Education Press, 2006: 16
钟群鹏, 赵子华. 断口学 [M]. 北京: 高等教育出版社, 2006: 16
12 Liu L L, Jiang F, Wang Y, et al. Fatigue fractography of 5A06 aluminum alloy under different stresses [J]. Aerosp. Mater. Technol., 2015, 45(5): 70
刘乐乐, 姜锋, 汪莹等. 不同应力水平下5A06铝合金的疲劳断口研究 [J]. 宇航材料工艺, 2015, 45(5): 70
13 Zhou S, Xie L Y, Hui L, et al. Fatigue life degenerating rule of pre-corroded aviation aluminum alloy [J]. J. Northeastern Univ. (Nat. Sci.), 2016, 37: 969
周松, 谢里阳, 回丽等. 航空铝合金预腐蚀疲劳寿命退化规律 [J]. 东北大学学报 (自然科学版), 2016, 37: 969
14 Wang Y L, Pan Q L, Wei L L, et al. Fatigue fracture characteristic of 7050-T7451 high-strength aluminum alloy thick plate [J]. Mater. Mech. Eng., 2013, 37(6): 26
王艺淋, 潘清林, 韦莉莉等. 高强7050-T7451铝合金厚板的疲劳断口特征 [J]. 机械工程材料, 2013, 37(6): 26
15 Deng J H, Chen P J, Fu Y. Parabolic model of equivalent crack approach for predicting fatigue life of pre-corroded aluminum alloys [J]. Acta Aeron. Astronau. Sin., 2018, 39(2): 221421
邓景辉, 陈平剑, 付裕. 用于预腐蚀航空铝合金材料疲劳寿命分析的腐蚀当量裂纹的抛物线模型 [J]. 航空学报, 2018, 39(2): 221421
16 Chaussumier M, Mabru C, Shahzad M, et al. A predictive fatigue life model for anodized 7050 aluminium alloy [J]. Int. J. Fatigue, 2013, 48: 205
17 Yin Z P, Xie C. Structural Fatigue and Fracture [M]. Xi'an: Northwestern Polytechnical University Press, 2012: 6
殷之平, 谢传. 结构疲劳与断裂 [M]. 西安: 西北工业大学出版社, 2012: 6
18 Wu S C, Ren X Y, Kang G Z, et al. Progress and challenge on fatigue resistance assessment of railway vehicle components [J]. J. Traffic Trans. Eng., 2021, 21(1): 81
吴圣川, 任鑫焱, 康国政等. 铁路车辆部件抗疲劳评估的进展与挑战 [J]. 交通运输工程学报, 2021, 21(1): 81
[1] ZHAN Yuting, WANG Jianhua, JIN Kai, CHEN Jianbin, WANG Hujun, FANG Jun, CHEN Weilin, SUI Lei. Effect of Shot Peening on Fatigue Life Performance of a Home-made Nut[J]. 中国腐蚀与防护学报, 2021, 41(3): 395-399.
[2] Gaohong CHEN,Yuansen HU,Mei YU,Jianhua LIU,Guoai LI. Effect of Sulfuric Acid Anodizing on Mechanical Properties of 2E12 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[3] LIU Tao,AI Jun,ZHANG Lifang,ZHANG Pengfei,
YANG Zhaohui,XU Chunlin. Life Prediction of Anti-corrosion Coating for Steel Box Girder by In-door Simulation Tests Combined with #br#Image Processing Technique[J]. 中国腐蚀与防护学报, 2013, 33(5): 407-412.
[4] WANG Gang, JIN Ping, TAN Xiaoming, WANG De. RESEARCH ON CORROSION DAMAGE EVOLVEMENT RULE OF 7B04 ALUMINUM ALLOY UNDER OCEAN ENVIRONMENT[J]. 中国腐蚀与防护学报, 2012, 32(4): 338-342.
[5] BAO Juncheng, ZHAO Jie, WANG Zhiqi, MA Xu.
EXPERIMENTAL RESEARCH ON FATIGUE PROPERTY OF WELDED JOINTS OF BT20 TITANIUM ALLOY IN CORROSION ENVIRONMENT
[J]. 中国腐蚀与防护学报, 2010, 30(4): 313-316.
[6] ;. INFLUENCE OF COATING OF COVERING AIRPLANE ON CORROSION FATIGUE LIFE OF ALUMINIUM ALLOY LY12CZ[J]. 中国腐蚀与防护学报, 2006, 26(1): 34-36 .
[7] Zuming Liu. An Effect of Corrosion Environment on fatigue Properties of LY12CZ Al-Alloy Typical Bolted Lap Joints[J]. 中国腐蚀与防护学报, 2004, 24(5): 267-271 .
No Suggested Reading articles found!