|
|
Effect of Corrosion Damage on Fatigue Behavior of AA7075-T651 Al-alloy |
WENG Shuo1,2,3( ), YU Jun1, ZHAO Lihui1,2,3, FENG Jinzhi1,2,3, ZHENG Songlin1,2,3 |
1.School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2.Key Laboratory of Strength and Reliability Evaluation of Auto Mechanical Components for Mechanical Industry, Shanghai 200093, China 3.Shanghai Public Technology Platform for Reliability Evaluation of New Energy Vehicles, Shanghai 200093, China |
|
|
Abstract The fatigue test for the 7075-T651 Al-alloy samples with and without being immersed in 3.5% (mass fraction) NaCl solution for 150 and 500 h, respectively, was carried out, in order to reveal the influence of corrosion damage on the fatigue behavior of the alloy. The results show that compared to the blank alloy samples, the fatigue life of 7075-T651 Al-alloy subjected to immersion corrosion is significantly reduced due to the presence of corrosion damage. The size of corrosion pits in the specimens immersed for 500 h are much large than those for 150 h, but the fatigue life of the two types of specimens with corrosion damage are more or less at the same stress level. Based on the fatigue notch coefficient theory and Stromeyer three-parameter S-N curve formula, the life of the damaged Al-alloy sample was predicted, and the predicted results totally located in the double dispersion band, which indicates that the predicted formula fits well with the results of experimental results.
|
Received: 31 May 2021
|
|
Fund: National Natural Science Foundation of China(52005336);China Postdoctoral Science Foundation(2020M671167);Shanghai Sailing Program(19YF1434400) |
Corresponding Authors:
WENG Shuo
E-mail: wengshuo@usst.edu.cn
|
About author: WENG Shuo, E-mail: wengshuo@usst.edu.cn
|
1 |
Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
|
|
丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
|
2 |
Chen Y L, Wu S J, Zhang Y, et al. Corrosion behavior and DFR degradation law of 2024-T3 aluminium alloy in different surface state [J]. Equip. Environ. Eng., 2020, 17(6): 44
|
|
陈跃良, 吴省均, 张勇等. 不同表面状态2024-T3铝合金腐蚀行为及DFR退化规律 [J]. 装备环境工程, 2020, 17(6): 44
|
3 |
Tan X M, Zhang D F, Bian G X, et al. Effect of corrosion damage on fatigue crack initiation mechanism and growth behavior of high strength aluminum alloy [J]. J. Mech. Eng., 2014, 50(22): 76
|
|
谭晓明, 张丹峰, 卞贵学等. 腐蚀对新型高强度铝合金疲劳裂纹萌生机制及扩展行为的作用 [J]. 机械工程学报, 2014, 50(22): 76
|
4 |
Chen Y L, Bian G X, Yi L, et al. Research on fatigue characteristic and fracture mechanics of aluminum alloy under alternate action of corrosion and fatigue [J]. J. Mech. Eng., 2012, 48(20): 73
|
|
陈跃良, 卞贵学, 衣林等. 腐蚀和疲劳交替作用下飞机铝合金疲劳性能及断裂机理研究 [J]. 机械工程学报, 2012, 48(20): 73
|
5 |
Sun X G, Wang Z H, Xu X X, et al. Effect of industrial atmospheric environment on corrosion fatigue behavior of Al-Mg-Si alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 501
|
|
孙晓光, 王子晗, 徐学旭等. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 501
|
6 |
Song H P, Liu C C, Zhang H, et al. Experimental investigation on damage evolution in pre-corroded aluminum alloy 7075-T7651 under fatigue loading [J]. Mater. Sci. Eng., 2021, 799A: 140206.
|
7 |
Chen Y P, Zeng B Y, Yu J J, et al. Fatigue life prediction method of pre-corroded aluminum matrix composite [J]. Corros. Prot., 2021, 42(1): 36
|
|
陈亚萍, 曾本银, 喻溅鉴等. 预腐蚀铝基复合材料疲劳寿命的预测方法 [J]. 腐蚀与防护, 2021, 42(1): 36
|
8 |
Xu L, Yu X, Hui L, et al. Fatigue life prediction of aviation aluminium alloy based on quantitative pre-corrosion damage analysis [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1353
|
9 |
Zhan Z X, Yu X, Hu W P, et al. Damage mechanics-based approach for fatigue life prediction of aluminum alloy with pre-corrosion damage [J]. J. Beijing Univ. Aeron. Astron., 2021,
|
|
詹志新, 余洵, 胡伟平等. 基于损伤力学的含预腐蚀损伤铝合金的疲劳寿命预测 [J]. 北京航空航天大学学报, 2021,
|
10 |
Basquin O H. The exponential law of endurance tests [J]. Am. Soc. Test. Mater., 1910, 10: 625
|
11 |
Zhong Q P, Zhao Z H. Fractography [M]. Beijing: Higher Education Press, 2006: 16
|
|
钟群鹏, 赵子华. 断口学 [M]. 北京: 高等教育出版社, 2006: 16
|
12 |
Liu L L, Jiang F, Wang Y, et al. Fatigue fractography of 5A06 aluminum alloy under different stresses [J]. Aerosp. Mater. Technol., 2015, 45(5): 70
|
|
刘乐乐, 姜锋, 汪莹等. 不同应力水平下5A06铝合金的疲劳断口研究 [J]. 宇航材料工艺, 2015, 45(5): 70
|
13 |
Zhou S, Xie L Y, Hui L, et al. Fatigue life degenerating rule of pre-corroded aviation aluminum alloy [J]. J. Northeastern Univ. (Nat. Sci.), 2016, 37: 969
|
|
周松, 谢里阳, 回丽等. 航空铝合金预腐蚀疲劳寿命退化规律 [J]. 东北大学学报 (自然科学版), 2016, 37: 969
|
14 |
Wang Y L, Pan Q L, Wei L L, et al. Fatigue fracture characteristic of 7050-T7451 high-strength aluminum alloy thick plate [J]. Mater. Mech. Eng., 2013, 37(6): 26
|
|
王艺淋, 潘清林, 韦莉莉等. 高强7050-T7451铝合金厚板的疲劳断口特征 [J]. 机械工程材料, 2013, 37(6): 26
|
15 |
Deng J H, Chen P J, Fu Y. Parabolic model of equivalent crack approach for predicting fatigue life of pre-corroded aluminum alloys [J]. Acta Aeron. Astronau. Sin., 2018, 39(2): 221421
|
|
邓景辉, 陈平剑, 付裕. 用于预腐蚀航空铝合金材料疲劳寿命分析的腐蚀当量裂纹的抛物线模型 [J]. 航空学报, 2018, 39(2): 221421
|
16 |
Chaussumier M, Mabru C, Shahzad M, et al. A predictive fatigue life model for anodized 7050 aluminium alloy [J]. Int. J. Fatigue, 2013, 48: 205
|
17 |
Yin Z P, Xie C. Structural Fatigue and Fracture [M]. Xi'an: Northwestern Polytechnical University Press, 2012: 6
|
|
殷之平, 谢传. 结构疲劳与断裂 [M]. 西安: 西北工业大学出版社, 2012: 6
|
18 |
Wu S C, Ren X Y, Kang G Z, et al. Progress and challenge on fatigue resistance assessment of railway vehicle components [J]. J. Traffic Trans. Eng., 2021, 21(1): 81
|
|
吴圣川, 任鑫焱, 康国政等. 铁路车辆部件抗疲劳评估的进展与挑战 [J]. 交通运输工程学报, 2021, 21(1): 81
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|