Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 529-534    DOI: 10.11902/1005.4537.2020.146
Current Issue | Archive | Adv Search |
Effect of Denitration Agent Concentration on Corrosion Resistance and Critical Pitting Temperature of S2205 Stainless Steel
CUI Haoran1, LIANG Ping1(), SHI Yanhua1, YANG Zhongkui1, HAN Li2
1.School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China
2.Far East Shaie Oil Refinery Co. , Ltd, Fushun 113001, China
Download:  HTML  PDF(1719KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of denitration agent (NaClO2) concentration on the corrosion resistance of S2205 stainless steel in denitration solutions was studied by means of potentiodynamic polarization curve, electrochemical impedance and Mott-Schottky curve measurements. Meanwhile, the variation of critical pitting temperature (CPT) with the NaClO2 concentration was measured by potentiostatic polarization method. The results show that as the NaClO2 concentration increases, the corrosion resistance of the steel decreases first and then increases. In the potential range of 0.4~0.6 V, the insoluble Cr3+ oxide in the passivation film of p-type semiconducting is transformed into soluble Cr6+ oxide, as a result, which degrade the stability of the passivation film. The carrier density is the largest and the relevant corrosion resistance is the worst for the passivation film formed in the solution with 6%NaClO2. The CPTs corresponding to the solutions containing 3%, 6%, and 9% NaClO2 were 65.2, 57.4 and 62.5 ℃, respectively.

Key words:  S2205 stainless steel      denitration agent      electrochemical test      critical pitting temperature     
Received:  09 August 2020     
ZTFLH:  TG172.4  
Fund: Program of Undergraduate Innovation and Entrepreneurship for Liaoning Province(201910148057)
Corresponding Authors:  LIANG Ping     E-mail:  liangping770101@163.com
About author:  LIANG Ping, E-mail: liangping770101@163.com

Cite this article: 

CUI Haoran, LIANG Ping, SHI Yanhua, YANG Zhongkui, HAN Li. Effect of Denitration Agent Concentration on Corrosion Resistance and Critical Pitting Temperature of S2205 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 529-534.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.146     OR     https://www.jcscp.org/EN/Y2021/V41/I4/529

Fig.1  Potential polarization curves of S2205 stainless steel under different NaClO2 concentrations
ConcentrationIcorr / A·cm-2Ecorr / VCorrosion rate / mm·a-1
3%1.07×10-7-0.2570.0012507
6%3.07×10-7-0.1700.0035999
9%1.25×10-7-0.2740.0014606
Table 1  Fitting results of potential polarization curves of S2205 stainless steel under different NaClO2 concentrations
Fig.2  Electrochemical impedance spectra of S2205 stainless steel under different NaClO2 concentrations
Fig.3  Equivalent circuit model of S2205 stainless steel in NaClO2 solution
Concentration

Rs

Ω·cm2

Rf

Ω·cm2

Rct

Ω·cm2

CPEdl

F·cm-2

CPEf

F·cm-2

3%5.045281077269.43×10-69.99×10-6
6%23.13976710572.45×10-62.50×10-6
9%6.582175011582.82×10-68.93×10-7
Table 2  Fitting results of electrochemical impedance spectra of S2205 stainless steel under different NaClO2 concentrations
Fig.4  Mott-Schottky curves of S2205 stainless steel under different NaClO2 concentration conditions
ConcentrationND / cm-3NA1 / cm-3NA2 / cm-3NA3 / cm-3
3%5.64×10204.25×10204.68×10203.24×1020
6%1.06×10217.17×10203.14×10217.46×1020
9%7.60×10205.27×10208.92×10205.27×1020
Table 3  Fitting results of Mott-Schottky curves for S2205 stainless steel under different NaClO2 concentrations
Fig.5  Relationship curves between carrier density and NaClO2 concentration of S2205 stainless steel in different potential intervals
Fig.6  CPT curves of S2205 stainless steel under different NaClO2 concentration conditions at 0.5 V constant potential
1 Wu J, Han H Y. Current status and development of duplex stainless steel in China [J]. China Steel, 2003, (3): 47
吴玖, 韩怀月. 中国双相不锈钢的现状与发展 [J]. 中国钢铁业, 2003, (3): 47
2 Xiao Y, Yang X, Ou T X, et al. Corrosion behavior of 2205 DSS in the environment with coexisting of chloride and sulfur ions [J]. Mater. Prot., 2018, 51(12): 33
肖莹, 杨席, 欧天雄等. 2205 DSS在Cl-和S2-共存环境中的腐蚀行为 [J]. 材料保护, 2018, 51(12): 33
3 Verma J, Taiwade R V, Khatirkar R K, et al. Microstructure, mechanical and intergranular corrosion behavior of dissimilar DSS 2205 and ASS 316L shielded metal arc welds [J]. Trans. Indian Inst. Met., 2017, 70: 225
4 Peguet L, Gaugain A, Dussart C, et al. Statistical study of the critical pitting temperature of 22-05 duplex stainless steel [J]. Corros. Sci., 2012, 60: 280
5 Hou Y, Cheng C Q, Zhao J, et al. Effect of tensile stress on critical pitting temperature and pitting corrosion behavior of 2205 duplex stainless steel [J]. Mater. Rev., 2019, 33: 1022
侯艳, 程从前, 赵杰等. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响 [J]. 材料导报, 2019, 33: 1022
6 Antony P J, Chongdar S, Kumar P, et al. Corrosion of 2205 duplex stainless steel in chloride medium containing sulfate-reducing bacteria [J]. Electrochim. Acta, 2007, 52: 3985
7 Tladi M N A, Obadele B A, Olubambi P A. Electrochemical characteristics of cathodically protected 2205 duplex stainless steel in saline environment [J]. J. Fail. Anal. Prev., 2019, 19: 1428
8 Yang J C, Liu X J, Zhou L, et al. Effect of nitrogen on corrosion resistance of 2205 duplex stainless steel in NaCl solution [J]. Heat Treat. Met., 2019, 44(5): 6
杨吉春, 刘香军, 周莉等. 氮对2205双相不锈钢在NaCl溶液中耐腐蚀性能的影响 [J]. 金属热处理, 2019, 44(5): 6
9 Deng D W, Niu T T, Tian X, et al. Research on carburized structure and properties of 2205 duplex stainless steel [J]. Hot Work. Technol., 2017, 46(20): 198
邓德伟, 牛婷婷, 田鑫等. 2205双相不锈钢渗碳组织及性能研究 [J]. 热加工工艺, 2017, 46(20): 198
10 Lv Y X. Effect of phase on selective corrosion of 2205 duplex stainless steel [J]. Corros. Sci. Prot. Technol., 2017, 29: 609
吕迎玺. σ相对2205双相不锈钢选择性腐蚀影响的研究 [J]. 腐蚀科学与防护技术, 2017, 29: 609
11 Zhang Y H, Liu J, Huang F, et al. Effect of composition and size of oxide inclusions on pitting initiation of 2205 duplex stainless steel [J]. Corros. Sci. Prot. Technol., 2018, 30: 105
张耀华, 刘静, 黄峰等. 2205双相不锈钢中氧化物夹杂的成分和尺寸对点蚀萌生的影响 [J]. 腐蚀科学与防护技术, 2018, 30: 105
12 Gao L F, Du M. Pitting corrosion behaviors of 2205 duplex stainless steel in desalination seawater [J]. Equip. Environ. Eng., 2017, 14(2): 11
高丽飞, 杜敏. 2205双相不锈钢在淡化海水中的点蚀行为 [J]. 装备环境工程, 2017, 14(2): 11
13 Li D G, Chen D R, Feng Y R, et al. Investigation on the composition and semi-conductive property of the passive film on 22Cr duplex stainless steel [J]. Acta Chim. Sin., 2008, 66: 2329
李党国, 陈大融, 冯耀荣等. 22Cr双相不锈钢钝化膜组成及其半导体性能研究 [J]. 化学学报, 2008, 66: 2329
14 Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott–Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
15 Fujimoto S, Tsuchiya H. Semiconductor properties and protective role of passive films of iron base alloys [J]. Corros. Sci., 2007, 49: 195
16 Fattah-Alhosseini A, Golozar M A, Saatchi A, et al. Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels [J]. Corros. Sci., 2010, 52: 205
17 Han D R, Hou J, Yang C H, et al. Corrosion of metals and alloys, determination of the critical pitting temperature under potentiostatic control [S]. Beijing: China Standard Press, 2016
韩东锐, 侯捷, 杨朝晖等. 金属和合金的腐蚀恒电位控制下的临界点蚀温度测定 [S]. 北京: 中国标准出版社, 2016
18 Liao K X, Cao Z H, He Z F. Influence of chloride ion on critical pitting temperature of 316L stainless steel [J]. Corros. Prot., 2017, 38: 446
廖柯熹, 曹增辉, 贺站锋. 氯离子对316L不锈钢临界点蚀温度的影响 [J]. 腐蚀与防护, 2017, 38: 446
19 An P L, Liang P, Zhang Y X, et al. Corrosion resistance of 2205 duplex stainless steel in hydrofluoric acid [J]. Mater. Prot., 2016, 49(11): 18
安朋亮, 梁平, 张云霞等. 2205双相不锈钢的抗氢氟酸腐蚀行为 [J]. 材料保护, 2016, 49(11): 18
20 Kong W H, Ai Z B, Wan Z, et al. Effect of potential on the corrosion resistance of S22053 stainless steel in 6% FeCl3 solution [J]. Mater. Prot., 2019, 52(7): 48
孔韦海, 艾志斌, 万章等. 电位对S22053不锈钢在6%FeCl3溶液中耐腐蚀性能的影响 [J]. 材料保护, 2019, 52(7): 48
21 Fan L, Li X G, Du C W, et al. Electrochemical behavior of passive films formed on X80 pipeline steel in various concentrated NaHCO3 solutions [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 322
范林, 李晓刚, 杜翠薇等. X80管线钢钝化膜在各种高浓度NaHCO3溶液中的电化学行为 [J]. 中国腐蚀与防护学报, 2012, 32: 322
22 Lang F J, Ruan W H, Li M C, et al. Influence of temperature on corrosion of 316L stainless steel in seawater [J]. Corros. Sci. Prot. Technol., 2012, 24: 61
郎丰军, 阮伟慧, 李谋成等. 温度对316L不锈钢耐海水腐蚀性能的影响 [J]. 腐蚀科学与防护技术, 2012, 24: 61
23 Pang X G, Liu R Q, Wang W T, et al. Effect of aging temperature on microstructure and corrosion resistance of S32750 super duplex stainless steel in hydrofluoric acid [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 519
逄旭光, 刘润青, 王文涛等. 时效温度对S32750超级双相不锈钢组织和抗氢氟酸腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 519
24 Gui Y, Gao Y. Progress of research on performance of passive films of stainless steels [J]. Spec. Steel, 2011, 32(3): 20
桂艳, 高岩. 不锈钢表面钝化膜特性的研究进展 [J]. 特殊钢, 2011, 32(3): 20
25 Zhong Q D, Wang C, Lu X G, et al. Semiconducting behavior of 304 stainless steel in electrolyte solution [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 341
钟庆东, 王超, 鲁雄刚等. 304不锈钢钝化膜在不同溶液中的半导体导电行为 [J]. 中国腐蚀与防护学报, 2008, 28: 341
26 Li J B, Zheng M S, Zhu J W. Semiconductive properties of passive film formed on 304l stainless steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 348
李金波, 郑茂盛, 朱杰武. 304L不锈钢钝化膜半导体性能研究 [J]. 腐蚀科学与防护技术, 2006, 18: 348
[1] YANG Zhongkui, SHI Yanhua, QIAO Zhongli, LIANG Ping, WANG Ling. Effect of ClO2- on Pitting Initiation of S2205 Stainless Steel in Cl- Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
[2] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[4] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[5] Jing LIU,Xiaolu LI,Chongwei ZHU,Tao ZHANG,Guanxin ZENG,Guozhe MENG,Yawei SHAO. Prediction of Critical Pitting Temperature of 316L Stainless Steel in Gas Field Environments by Artificial Neutral Network[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[6] HE Jin, YAN Minsheng, YANG Lijing, Masoumeh Moradi, SONG Zhenlun, JIANG Yehua. Electrochemical Corrosion and Critical Pitting Temperature of S32750 Super Duplex Stainless Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(2): 106-112.
[7] FENG Yong,HE Deliang,GONG Desheng,LI Fei,WU Jianxin. Corrosion Resistance Properties of Domestic 825 Alloy[J]. 中国腐蚀与防护学报, 2013, 33(2): 164-170.
[8] ZOU Guanchi,SHEN Hanjie,LI Chenglin,YONG Xingyue. Establishment and Experimental Verification of Hydrodynamic Model for Impingement Corrosion Apparatus[J]. 中国腐蚀与防护学报, 2013, 33(1): 47-53.
[9] HUANG Bensheng, JIANG Zhongying, PAN Huanhuan, YUAN Pengbin, LIU Qingyou. INFLUENCE OF DIFFERENT HEAT TREATMENT ON CORROSION RESISTANCE OF G105 PIPE[J]. 中国腐蚀与防护学报, 2012, 32(1): 67-69.
[10] MA Ying, FENG Junyan, MA Yuezhou, ZHAN Hua,GAO Wei. COMPARATIVE STUDY ON CHARACTERIZATION OF CORROSION RESISTANCE OF MICRO-ARC OXIDATION COATINGS ON MAGNESIUM ALLOYS[J]. 中国腐蚀与防护学报, 2010, 30(6): 442-448.
[11] WENG Yongji LI Weifeng LI Xiangyi. COMPARISON OF CRITICAL PITTING TEMPERATURES FOR OIL INDUSTRY STEELS USING ELECTROCHEMICAL NOISE[J]. 中国腐蚀与防护学报, 2009, 29(6): 421-425.
[12] LUO Hong. CORROSION RESISTANCE OF PACK ALUMINIZED SUS304 STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2009, 29(5): 344-348.
[13] ;. The synergetic effect of chloride and fluoride on the critical pitting temperature of 316 stainless steel[J]. 中国腐蚀与防护学报, 2008, 28(1): 30-33 .
No Suggested Reading articles found!