Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 295-300    DOI: 10.11902/1005.4537.2021.047
Current Issue | Archive | Adv Search |
Microstructure and Properties of Dissimilar Metal Welded Joints of Low Alloy Steel and Duplex Stainless Steel
DING Yi1, WANG Liwei2(), LIU Deyun1, WANG Xin1
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
Download:  HTML  PDF(10879KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dissimilar metal welded joints of 2507 super duplex stainless steel (2507SDSS/X80) were prepared via metal inert gas welding (MIG) technology with 2507SDSS and X80 pipeline steel as raw and processed materials. The microstructure and properties of dissimilar metal welded joints were assessed by means of optical microscopy, SEM with EDS and microhardness tester, as well as electrochemical test in artificial seawater. Results show that obvious concentration gradients of Fe, Cr, Ni, Mo and Mn could be detected in the area between the fusion line and Type-II interface. The dilution zone has the highest hardness. Galvanic corrosion emerges for the couple of X80 steel and weld metal. In general, MIG welding filler ER2594 is suitable for welding the dissimilar metals of 2507SDSS super duplex stainless steel and low alloy in practical application.

Key words:  dissimilar metal welding      duplex stainless steel      galvanic corrosion      microstructure     
Received:  10 March 2021     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51701102)
Corresponding Authors:  WANG Liwei     E-mail:  ustbwangliwei@126.com
About author:  WANG Liwei, E-mail: ustbwangliwei@126.com

Cite this article: 

DING Yi, WANG Liwei, LIU Deyun, WANG Xin. Microstructure and Properties of Dissimilar Metal Welded Joints of Low Alloy Steel and Duplex Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 295-300.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.047     OR     https://www.jcscp.org/EN/Y2022/V42/I2/295

Fig.1  Diagram of welded joint dimensions
Fig.2  Metallographic images of X80 steel (a), 2507SDSS (b) substrate, weld (c) and WM two-phase ratio (d)
Fig.3  OM (a, c) and SEM (b, d) images of WM/2507 SDSS (a, b) and WM/X80 steel interface (c, d) side transition region
Fig.4  EDS line scan results of the transition region on the WM/X80 side
Fig.5  HAZ metallographies of coarse-grained zone (a), fine-grained zone (b) and two-phase zone (c) of X80 steel
Fig.6  Microhardness distribution in transition zone of welded joint
Fig.7  Polarization curves of different areas of MIG welded joints in artificial seawater
1 Mendoza B I, Maldonado Z C, Albiter H A, et al. Dissimilar welding of superduplex stainless steel/HSLA steel for offshore applications joined by GTAW [J]. Engineering, 2010, 2: 520
2 Zhu R L, Zhang Z M, Wang J Q, et al. Review on SCC crack growth behavior of dissimilar metal welds for nuclear power reactors [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 189
朱若林, 张志明, 王俭秋等. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 189
3 Liou H Y, Hsieh R I, Tsai W T. Microstructure and stress corrosion cracking in simulated heat-affected zones of duplex stainless steels [J]. Corros. Sci., 2002, 44: 2841
4 Ma H C, Liu Z Y, Du C W, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide [J]. Corros. Sci., 2015, 100: 627
5 Sadeghian M, Shamanian M, Shafyei A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel [J]. Mater. Des., 2014, 60: 678
6 Zhou C S, Huang Q Y, Guo Q, et al. Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy [J]. Corros. Sci., 2016, 110: 242
7 Zhang Y, Qin Z X, Xu H J, et al. Corrosion resistance of dissimilar metal joints of economic ferritic stainless steel and weathering steel [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 115
张勇, 覃作祥, 许鸿吉等. 经济型铁素体不锈钢与耐候钢异种金属接头的耐蚀性能 [J]. 中国腐蚀与防护学报, 2012, 32: 115
8 Yi H W, Hu H H, Chen C F, et al. Corrosion behavior and corrosion inhibition of dissimilar metal welds for X65 steel in CO2-containing environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 96
伊红伟, 胡慧慧, 陈长风等. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究 [J]. 中国腐蚀与防护学报, 2020, 40: 96
9 Wang J, Lu M X, Zhang L, et al. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel [J]. Int. J. Miner. Metall. Mater., 2012, 19: 518
10 Bettahar K, Bouabdallah M, Badji R, et al. Microstructure and mechanical behavior in dissimilar 13Cr/2205 stainless steel welded pipes [J]. Mater. Des., 2015, 85: 221
11 Ramirez A J, Lippold J C, Brandi S D. The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels [J]. Metall. Mater. Trans., 2003, 34A: 1575
12 Ramirez A J, Brandi S D, Lippold J C. Secondary austenite and chromium nitride precipitation in simulated heat affected zones of duplex stainless steels [J]. Sci. Technol. Weld. Join., 2004, 9: 301
13 Geng S N, Sun J S, Guo L Y, et al. Evolution of microstructure and corrosion behavior in 2205 duplex stainless steel GTA-welding joint [J]. J. Manuf. Process., 2015, 19: 32
14 Yang Y H, Yan B, Li J, et al. The effect of large heat input on the microstructure and corrosion behaviour of simulated heat affected zone in 2205 duplex stainless steel [J]. Corros. Sci., 2011, 53: 3756
15 Eghlimi A, Shamanian M, Raeissi K. Effect of current type on microstructure and corrosion resistance of super duplex stainless steel claddings produced by the gas tungsten arc welding process [J]. Surf. Coat. Technol., 2014, 244: 45
16 Nelson T W, Lippold J C, Mills M J. Investigation of boundaries and structures in dissimilar metal welds [J]. Sci. Technol. Weld. Join., 1998, 3: 249
17 Nelson T W, Lippold J C, Mills M J. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar metal welds—Part 2: On-cooling transformations [J]. Weld. Res., 2000, 79: 267
18 Mohseni P, Solberg J K, Karlsen M, et al. Investigation of mechanism of cleavage fracture initiation in intercritically coarse grained heat affected zone of HSLA steel [J]. Mater. Sci. Technol., 2012, 28: 1261
19 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
20 Ramkumar K D, Thiruvengatam G, Sudharsan S P, et al. Characterization of weld strength and impact toughness in the multi-pass welding of super-duplex stainless steel UNS 32750 [J]. Mater. Des., 2014, 60: 125
21 Hou J, Peng Q J, Takeda Y, et al. Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint [J]. Corros. Sci., 2010, 52: 3949
22 Hajiannia I, Shamanian M, Kasiri M. Microstructure and mechanical properties of AISI 347 stainless steel/A335 low alloy steel dissimilar joint produced by gas tungsten arc welding [J]. Mater. Des., 2013, 50: 566
[1] CAI Jianmin, GUAN Lei, LI Yu. Effect of Surface Treatment on Galvanic Corrosion of 6061 Al-alloy and DC01 Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
[2] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[3] ZHANG Hengkang, HUANG Feng, XU Yunfeng, YUAN Wei, QIU Yao, LIU Jing. Microstructure Evolution and Electrochemical Passivation Behavior of FeCrMn1.3NiAlx High Entropy Alloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[4] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[5] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[6] LEI Zheyuan, WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Distribution on Pitting Initiation and Propagation of 2002 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[7] WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[8] WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[9] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[10] SHI Jian, HU Xuewen, ZHANG Daoliu, CAO Huidan, HE Bo, PU Hong, GUO Rui, WANG Fei. Influence of Microstructure on Corrosion Resistance of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[11] WANG Jia, LIU Xiaoyong, GAO Lingqing, ZHA Xiaoqin, LUO Xianfu, ZHANG Wenli, ZHANG Hengkun. Hydrogen Absorption Behavior of Near α Ti70 Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[12] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[13] ZUO Yong, QIN Yueqiang, SHEN Miao, YANG Xinmei. Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[14] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[15] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
No Suggested Reading articles found!