Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 200-210    DOI: 10.11902/1005.4537.2021.044
Current Issue | Archive | Adv Search |
Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships
WANG Bingqin1, ZHANG Xiaolian2, YONG Xingyue1(), ZHOU Huan3, GAO Xinhua3
1.State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China
2.Marine Chemical Research Institute, Qingdao 266071, China
3.Hina Ship Development and Design Center, Wuhan 430064, China
Download:  HTML  PDF(5682KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The galvanic corrosion behavior of TP2Y copper pipes coupled with #20 steel pipes in static and flowing 3.5% (mass fraction) NaCl solutions was numerically simulated by means of COMSOL Multiphysics software, while taking the flow field, concentration field and electrochemical dynamics process into consideration, aiming to predict the tendency of galvanic corrosion. The results showed that TP2Y pipes acted as the cathode and #20 steel pipes were the anode when TP2Y pipes were coupled with #20 steel pipes. The corrosion length of #20 steel pipes was dependent on the pipe diameter, flow rate and time. The length of the potential change of the coupled pipes increased gradually with pipe diameters, and that the inner surface potential of the coupled pipes increased with flow rate compared with that under stagnant condition. At the same time, the inner surface potentials of the copper (TP2Y) pipes and #20 steel pipes became negative and positive at the coupling position, respectively. The current density was up to the Max. at the coupling position. Under stagnant condition, the inner surface potentials of the copper (TP2Y) pipes and #20 steel pipes became negative, and did not change until 48 h later. the maximum corroded thickness at the flange of #20 steel would be up to about 8.87 μm, and the corrosion length would be about 800 mm in 30 d.

Key words:  different metallic pipes      galvanic corrosion      numerical simulation      potential distribution      current density distribution      corrosion prediction     
Received:  08 March 2021     
ZTFLH:  TG172  
Corresponding Authors:  YONG Xingyue     E-mail:  yongxy@mail.buct.edu.cn
About author:  YONG Xingyue, E-mail: yongxy@mail.buct.edu.cn

Cite this article: 

WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 200-210.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.044     OR     https://www.jcscp.org/EN/Y2022/V42/I2/200

φΓS
uμeff-px+x(μeffux)+y(μeffux)
vμeff-py+x(μeffuy)+y(μeffvy)
Kμ+μtσkG-ρε
εμ+μtσεεKC1G-C2ρε

μeff=μ+μtμt=ρCμK2ε

G=μt2ux2+vy2+uy+vx2

Cμ=0.09, C1=1.44, C2=1.92, σk=1.0, σε=1.3

Table 1  Values of Γ and S in Eq. (1)[15]
Fig.1  Schematic diagram of grids
Fig.2  Potential distributions of inner surface of TP2Y pipe coupled with steel pipes by insulating way with v=0 m/s (a) and v=1 m/s (b) and influence of flow velocity on the potential distributions of the inner surface of copper/steel under insulation conditions (c)
Fig.3  Effects of pipe diameters on the potential distributions (a~d) and current density (e~h) of the inner surface for TP2Y pipes directly coupled with #20 steel pipes: (a, e) DN=25 mm, (b, f) DN=50 mm, (c, g) DN=80 mm, (d, h) DN=100 mm
Fig.4  Influences of pipe diameters on the potentials (a) and current density (b) of the inner surface of TP2Y pipes directly coupled with #20 steel pipes
Fig.5  Effects of flow rates on potential distributions (a~d) and current density (e~h) of the inner surface for TP2Y pipes directly coupled with #20 steel pipes: (a, e) v=1 m/s, (b, f) v=3 m/s, (c, g) v=5 m/s, (d, h) v=10 m/s
Fig.6  Influence of flow rates on the potential (a) and current density (b) of the inner surface for TP2Y pipes directly coupled with #20 steel pipes
Fig.7  Effects of pipe diameters on the potential distributions (a~d) and current density (e~h) of the inner surface for TP2Y pipes directly coupled with #20 steel pipes under 3 m/s flow: (a, e) DN=25 mm, (b, f) DN=50 mm, (c, g) DN=80 mm, (d, h) DN=100 mm
Fig.8  Influences of pipe diameters on the potential (a) and current density (b) of the inner surface of TP2Y pipes directly coupled with # 20 steel pipes under 3 m/s flow
Fig.9  Effect of time on the potential distributions (a~d) and potential (e) of the inner surface for TP2Y pipes directly coupled with #20 steel pipes for 12 h (a), 24 h (b), 48 h (c) and 72 h (d)
Fig.10  Effect of time on the corrosion depth for #20 steel pipes (DN50) coupled directly with TP2Y pipes
Fig.11  Polarization curves of TP2Y/#20 steel in a 3.5% NaCl solution
Fig.12  Comparison of the experimental data with the numerical results
1 Yong X Y, Liu J J, Lin Y Z, et al. Application of numerical method to study of flow-induced corrosion—(Ⅱ) Metal corrosion under turbulent condition [J]. J. Chin. Soc. Corros. Prot., 1999, 19: 8
雍兴跃, 刘景军, 林玉珍等. 数值计算法在流体腐蚀研究中的应用—(Ⅱ) 湍流条件下金属的腐蚀 [J]. 中国腐蚀与防护学报, 1999, 19: 8
2 Cheng X D, Sun L F, Cao Z F, et al. Numerical simulation of chloride ion induced corrosion of reinforced concrete structures in marine environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 144
程旭东, 孙连方, 曹志烽等. 沿海钢筋混凝土结构Cl-侵蚀数值模拟方法研究 [J]. 中国腐蚀与防护学报, 2015, 35: 144
3 Mohammadian A, Rashetnia R, Lucier G, et al. Numerical simulation and experimental corroboration of galvanic corrosion of mild steel in synthetic concrete pore solution [J]. Cem. Concr. Compos., 2019, 103: 263
4 Saeedikhani M, Wijesinghe S, Blackwood D J. Moving boundary simulation and mechanistic studies of the electrochemical corrosion protection by a damaged zinc coating [J]. Corros. Sci., 2020, 163: 108296
5 Yin L T, Li W C, Wang Y C, et al. Numerical simulation of micro-galvanic corrosion of Al alloys: Effect of density of Al(OH)3 precipitate [J]. Electrochim. Acta, 2019, 324: 134847
6 Si X D, Si H T, Li M Y, et al. Investigation of corrosion behavior at elbow by array electrode and computational fluid dynamics simulation [J]. Mater. Corros., 2020, 71: 1637
7 Ren Y, Cheng G. Research progress on corrosion and protection simulation of metal materials in marine environment [J]. Equip. Environ. Eng., 2019, 16(12): 93
任勇, 成光. 海洋环境金属材料腐蚀与防护仿真研究进展 [J]. 装备环境工程, 2019, 16(12): 93
8 Chen Y, Huang W, Dong C C. Research status of numerical simulation of erosion corrosion in seawater pipeline [J]. Equip. Environ. Eng., 2016, 13(4): 48
陈艳, 黄威, 董彩常. 海水管路冲刷腐蚀数值模拟研究现状 [J]. 装备环境工程, 2016, 13(4): 48
9 Zheng F, Xing S H, He H, et al. Simulation study on influence of flow velocity and bending angle on corrosion behavior of elbow [J]. Equip. Environ. Eng., 2020, 17(6): 18
郑斐, 邢少华, 何华等. 流速和弯曲角度对弯头腐蚀行为影响仿真研究 [J]. 装备环境工程, 2020, 17(6): 18
10 Hu Y T, Dong P F, Jiang L, et al. Corrosion behavior of riveted joints of TC4 Ti-alloy and 316L stainless steel in simulated marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 167
胡玉婷, 董鹏飞, 蒋立等. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 167
11 Bai M M, Bai Z H, Jiang L, et al. Corrosion behavior of H62 brass alloy/TC4 titanium alloy welded specimens [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 159
白苗苗, 白子恒, 蒋立等. H62黄铜/TC4钛合金焊接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 159
12 Zhang Y, Chen Y L, Wang C G. Study on galvanic corrosion of aluminum alloy related joint in simulated coastal wet atmosphere [J]. Mater. Rep., 2016, 30(10): 152
张勇, 陈跃良, 王晨光. 模拟沿海大气环境下铝合金搭接件电偶腐蚀行为研究 [J]. 材料导报, 2016, 30(10): 152
13 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
14 Chen R H, Zhou L, Zhang C, et al. Potential distributions for coupling of disimillar metallic pipes in 3.5%NaCl solution [J]. Corros. Sci. Prot. Technol., 2019, 31: 483
陈日辉, 周林, 张聪等. 异种金属管道耦接引起的电位分布研究 [J]. 腐蚀科学与防护技术, 2019, 31: 483
15 Tao W Q. Numerical Heat Transfer [M]. Xi'an: Xi'an Jiaotong University Press, 1988: 431
陶文铨. 数值传热学 [M]. 西安: 西安交通大学出版社, 1988: 431
16 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 186
曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008: 186
17 Lin Y Z, Yang D J. Corrosion and Corrosion Control Principles [M]. 2nd ed. Beijing: Sinopec Press, 2014: 8
林玉珍, 杨德钧. 腐蚀和腐蚀控制原理 [M]. 2版. 北京: 中国石化出版社, 2014: 8
18 Chen M D, Zhang F, Liu Z Y, et al. Galvanic series of metals and effect of alloy compositions on corrosion resistance in Sanya seawater [J]. Acta Metall. Sin., 2018, 54: 1311
陈闽东, 张帆, 刘智勇等. 金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响 [J]. 金属学报, 2018, 54: 1311
19 Dong X C, Guan F, Xu L T, et al. Progress on the corrosion mechanism of sulfate-reducing bacteria in marine environment on metal materials [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 1
董续成, 管方, 徐利婷等. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 1
20 Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508
21 Zhang H, Du N, Zhou W J, et al. Effect of Fe3+ on pitting corrosion of stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 517
张浩, 杜楠, 周文杰等. 模拟海水溶液中Fe3+对不锈钢点蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 517
22 Wang Y, Wu J J, Zhang D. Research progress on corrosion of metal materials caused by Dissimilatory iron-reducing bacteria in seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 389
王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 389
23 Zhang T Y, Liu W, Fan Y M, et al. Effect of synergistic action of Cu/Ni on corrosion resistance of low alloy steel in a simulated tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 511
张天翼, 柳伟, 范玥铭等. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响 [J]. 中国腐蚀与防护学报, 2019, 39: 511
24 Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1365
柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365
25 Dehghani A, Mostafatabar A H, Bahlakeh G, et al. A detailed study on the synergistic corrosion inhibition impact of the Quercetin molecules and trivalent europium salt on mild steel; electrochemical/surface studies, DFT modeling, and MC/MD computer simulation [J]. J. Mol. Liq., 2020, 316: 113914
26 Sun F L, Li X G, Lu L, et al. Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of South China Sea [J]. Acta Metall. Sin., 2013, 49: 1219
孙飞龙, 李晓刚, 卢琳等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1219
27 Ding G Q, Li X Y, Zhang B, et al. Variation of free corrosion potential of several metallic materials in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 543
丁国清, 李向阳, 张波等. 金属材料在天然海水中的腐蚀电位及其变化规律 [J]. 中国腐蚀与防护学报, 2019, 39: 543
28 Liu D Y, Wei K J. Corrosion potentials of metals in natural sea water of South China Sea [J]. Corros. Sci. Prot. Technol., 1999, 11: 330
刘大扬, 魏开金. 金属在南海海域腐蚀电位研究 [J]. 腐蚀科学与防护技术, 1999, 11: 330
29 Li X G, Dong C F, Xiao K, et al. Corrosion Behavior and Mechanism of Typical Materials in Xisha Ocean Atmosphere Environment [M]. Beijing: Science Press, 2014: 123
李晓刚, 董超芳, 肖葵等. 西沙海洋大气环境下典型材料腐蚀/老化行为与机理 [M]. 北京: 科学出版社, 2014: 123
30 Tewary N K, Kundu A, Nandi R, et al. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel [J]. Corros. Sci., 2016, 113: 57
31 Gießgen T, Mittelbach A, Höche D, et al. Enhanced predictive corrosion modeling with implicit corrosion products [J]. Mater. Corros., 2019, 70: 2247
32 Sachin P, Baskaran S, Hrishikesh J, et al. An investigation of corrosion of tinplate oil cans during transportation [J]. J. Fail. Anal. Prev., 2019, 19: 1544
33 Kim Y S, Kim J G. Investigation of weld corrosion effects on the stress behavior of a welded joint pipe using numerical simulations[J]. Met. Mater. Int., 2019, 25: 918
34 Zhao Y Y. Cellular automaton simulations of corrosion damage evolution of aluminum [D]. Tianjin: Civil Aviation University of China, 2018: 11
赵沅沅. 金属铝腐蚀损伤演化过程的元胞自动机模拟 [D]. 天津: 中国民航大学, 2018: 11
35 Liu Y W, Zhang J, Wei Y H, et al. Effect of different UV intensity on corrosion behavior of carbon steel exposed to simulated Nansha atmospheric environment [J]. Mater. Chem. Phys., 2019, 237: 121855
36 Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
37 Liu B, Duan J Z, Hou B R. Microbiologically influenced corrosion of 316L SS by marine biofilms in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 48
刘彬, 段继周, 侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2012, 32: 48
38 Ju H, Duan J Z, Yang Y F, et al. Mapping the galvanic corrosion of three coupled metal alloys using coupled multielectrode array: Influence of chloride ion concentration [J]. Materials, 2018, 11: 634
39 Li Y D, Li Q, Tang X, et al. Reconstruction and characterization of galvanic corrosion behavior of X80 pipeline steel welded joints [J]. Acta Metall. Sin., 2019, 55: 801
李亚东, 李强, 唐晓等. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征 [J]. 金属学报, 2019, 55: 801
40 Dong H, Lian X T, Hu C D, et al. High performance steels: the scenario of theory and technology [J]. Acta Metall. Sin., 2020, 56: 558
董瀚, 廉心桐, 胡春东等. 钢的高性能化理论与技术进展 [J]. 金属学报, 2020, 56: 558
41 Ding G Q, Yang Z H, Huang G Q, et al. Corrosion potential of metals in natural river water [J]. Equip. Environ. Eng., 2017, 14(2): 31
丁国清, 杨朝晖, 黄桂桥等. 金属材料在天然河水中的腐蚀电位研究 [J]. 装备环境工程, 2017, 14(2): 31
[1] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[2] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[3] DING Qingmiao, GAO Yuning, HOU Wenliang, QIN Yongxiang. Influence of Cl- Concentration on Corrosion Behavior of Reinforced Concrete in Soil[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[4] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[5] ZHUANG Dawei, DU Yanxia, CHEN Taotao, LU Danping. Research on Boundary Condition Inversion Method for Numerical Simulation of Regional Cathodic Protection and Its Application[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[6] ZUO Yong, QIN Yueqiang, SHEN Miao, YANG Xinmei. Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[7] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[8] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[9] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[10] HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[11] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[12] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[13] Yanjie LIU,Zhenyao WANG,Binbin WANG,Yan CAO,Yang HUO,Wei KE. Mechanism of Galvanic Corrosion of Coupled 2024 Al-alloy and 316L Stainless Steel Beneath a Thin Electrolyte Film Studied by Real-time Monitoring Technologies[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[14] Xin ZHAO,Yulong HU,Fu DONG,Xiaodong ZHANG,Zhiqiao WANG. Effect of Moistened Electrical Insulation on Galvanic Corrosion Behavior of Dissimilar Metals[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
[15] Mumeng WEI,Bojun YANG,Yangyang LIU,Xiaoping WANG,Jinghua YAO,Lingqing GAO. Research Progress and Prospect on Erosion-corrosion of Cu-Ni Alloy Pipe in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
No Suggested Reading articles found!