Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (3): 318-326    DOI: 10.11902/1005.4537.2020.079
Current Issue | Archive | Adv Search |
Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor
CANG Yu1, HUANG Yuhui1(), WENG Shuo2, XUAN Fuzhen1
1.East China University of Science and Technology,Key Laboratory of Pressure System and Safety of Ministry of Education,Shanghai 200237, China
2.University of Shanghai for Science and Technology,Shanghai 200093,China
Download:  HTML  PDF(1953KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of chloride ion concentration, dissolved oxygen (DO) concentration and pH value of the water on the galvanic corrosion performance of the weld joint of 25Cr2Ni2MoV steel used for nuclear steam turbine rotor were investigated by means of potentiodynamic polarization measurements and electrochemical impedance spectroscopy. The results reveal that under different environmental variables selected, the welded joints of rotor steel exhibit a certain degree of galvanic corrosion effect, in which weld metal (WM) is preferentially corroded as the anode, and the corrosion resistance of WM and base metal (BM) decreases with the increasing chloride ion concentration, increasing dissolved oxygen content and decreasing pH value. In the environment of low chloride ion concentration (0.035 and 35 mg/L), the electrode process of WM and BM is controlled by ion diffusion, while in other environments, the electrode process is controlled by electrochemical activation. In addition, the increase of chloride ion concentration significantly enhances the galvanic corrosion effect of welded joints. The increase of dissolved oxygen concentration reduces the galvanic corrosion effect of welded joints, while the change of pH value under acidic conditions has no obvious effect on galvanic corrosion effects.

Key words:  welded joint      galvanic corrosion      potentiodynamic polarization      electrochemical impedance spectroscopy     
Received:  11 May 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51875202)
Corresponding Authors:  HUANG Yuhui     E-mail:  yhhuang@ecust.edu.cn
About author:  HUANG Yuhui, E-mail: yhhuang@ecust.edu.cn

Cite this article: 

CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 318-326.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.079     OR     https://www.jcscp.org/EN/Y2021/V41/I3/318

AreaCSiMnPSCrNiMoV
BM0.230.100.180.0050.0052.332.210.750.1
WM0.120.201.480.0050.0050.572.180.51---
Table 1  Chemical compositions of 25Cr2Ni2MoV (BM) and WM (mass fraction / %)
Fig.1  Polarization curves (a) and electrochemical parameters (b) of BM and WM in different Cl- concentrations
Fig.2  Nyquist plots (a, b) and equivalent circuits of (c, d) BM (a, c) and WM (b, d) in different Cl- concentrations
w[Cl-] mg·L-1Rs / Ω·cm2Rct / Ω·cm2Rf / Ω·cm2
BMWMBMWMBMWM
0.035884816830133402048011720040670
35108910162866175479435927
350052.9452.6214301273------
350007.2996.70417211494------
Table 2  Fitting results of the equivalent circuit of BM and WM in different Cl- concentrations
Fig.3  Polarization curves (a) and electrochemical parame-ters of BM and WM (b) in different DO concentrations
Fig.4  Nyquist plot of BM and WM in different DO concentrations
DO / mg·L-1Rs / Ω·cm2Rct / Ω·cm2
BMWMBMWM
06.1776.36382977289
87.2996.68617211494
306.2666.516450.2316.4
Table 3  Fitting results of the equivalent circuit of BM and WM in different DOconcentrations
Fig.5  Polarization curves (a) and electrochemical parame-ters (b) of BM and WM in different pH values
Fig.6  Nyquist plot of BM and WM in different pH values
pHRs / Ω·cm2Rct / Ω·cm2
BMWMBMWM
46.8686.8601404848
66.5656.72915031208
77.2996.68617211494
Table 4  Fitting results of the equivalent circuit of BM and WM in different pH values
Fig.7  Polarization curves of WJ in different environmental variables
[Cl-] / mg·L-1Icorr(WM) / μA·cm-2Icorr(WJ) / μA·cm-2γ
0.0350.69070.44681.647
354.4597.9052.773
35006.35612.352.943
350007.32414.843.026
Table 5  Self-corrosion current density and galvanic effect in different Cl- concentrations
[DO] / mg·L-1Icorr(WM) / μA·cm-2Icorr (WJ) / μA·cm-2γ
04.5049.4643.101
87.32414.843.026
3019.822.1611.109
Table 6  Self-corrosion current density and galvanic effect in different DO concentrations
pHIcorr(WM) / μA·cm-2Icorr(WJ) / μA·cm-2γ
49.41818.672.982
67.71014.552.887
77.32414.843.026
Table 7  Self-corrosion current density and galvanic effect in different pH values
1 Wang P, Huo X, Ding Y M. An overview on development of welding rotor technology in nuclear turbines [J]. Thermal Turb., 2015, 44: 296
王朋, 霍鑫, 丁玉明. 核电汽轮机焊接转子技术发展综述 [J]. 热力透平, 2015, 44: 296
2 Liu S H, Chen F B, Zhou X H. Typical quality problems and supervision measures for low pressure rotor of nuclear steam turbine [J]. Dongfang Turb., 2015, (3): 64
刘世辉, 陈富彬, 周新华. 核电汽轮机低压转子制造典型质量问题分析和监造措施 [J]. 东方汽轮机, 2015, (3): 64
3 Huang Y H, Ouyang Y Q, Weng S, et al. Effect of loading mode on fracture behavior of CrNiMoV steel welded joint in simulated environment of low pressure nuclear steam turbine [J]. Eng. Fract. Mechan., 2019, 205: 81
4 Weng S, Huang Y H, Xuan F Z, et al. Fracture location transition in constant load tests of a NiCrMoV steel welded joint [J]. Mater. Des., 2019, 181: 108072
5 Tsujino B, Miyase S. The galvanic corrosion of steel in sodium chloride solution [J]. Corrosion, 1982, 38: 226
6 ASTM G71-81. Standard Guide for Conducting and Evaluating Galvanic Corrosion Tests in Electrolytes [R]. West Conshohocken, PA: ASTM International, 1981
7 Zhang H B, Huang Y J, Pan J W. Estimation of electrochemical kinetic parameters and galvanic corrosion of 55%AL-ZN-1. 6%Si coatingin 3%NaCl solution [J]. J. Shanghai Jiaotong Univ., 1996, 30(11): 98
张洪斌, 黄永昌, 潘健武. 3%NaCl溶液中55%Al-Zn1. 6%Si合金镀层电化学参数测定及电偶腐蚀的电化学行为 [J]. 上海交通大学学报, 1996, 30(11): 98
8 Wang S Y, Ding J, Ming H L, et al. Characterization of low alloy ferritic steel-Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET [J]. Mater. Charact., 2015, 100: 50
9 Liu C, Chen D L, Bhole S, et al. Polishing-assisted galvanic corrosion in the dissimilar friction stir welded joint of AZ31 magnesium alloy to 2024 aluminum alloy [J]. Mater. Charact., 2009, 60: 370
10 Li G F, Charles E A, Congleton J. Effect of post weld heat treatment on stress corrosion cracking of a low alloy steel to stainless steel transition weld [J]. Corros. Sci., 2001, 43: 1963
11 Li J, Dong C F, Li X G. Effect of pH value on the galvanic corrosion behaviour of Q235-304L couples in sulfur environment [J]. J. Univ. Sci. Technol. Beijing, 2006, 28: 52
李君, 董超芳, 李晓刚. pH值对Q235碳钢与304L不锈钢在典型含硫环境中电偶腐蚀行为的影响 [J]. 北京科技大学学报, 2006, 28: 52
12 Yin Z F, Yan M L, Bai Z Q, et al. Galvanic corrosion associated with SM 80SS steel and Ni-based alloy G3 couples in NaCl solution [J]. Electrochim. Acta, 2008, 53: 6285
13 Ouyang Y Q, Huang Y H, Weng S, et al. Galvanic corrosion behavior of nuclear steam turbine welding rotor joint in Chloride environment [J]. Trans. China Weld. Inst., 2019, 40(6): 153
欧阳玉清, 黄毓晖, 翁硕等. 核电汽轮机焊接转子接头在氯离子环境中的电偶腐蚀行为 [J]. 焊接学报, 2019, 40(6): 153
14 Turnbull A, Zhou S. Pit to crack transition in stress corrosion cracking of a steam turbine disc steel [J]. Corros. Sci., 2004, 46: 1239
15 Lyle F F, McMinn A, Leverant G R. Low‐pressure steam turbine disc cracking-an update [J]. Proc. Inst. Mechan. Eng., 1985, 199A: 59
16 Wang J M, Arjmand F, Du D H, et al. Electrochemical corrosion behaviors of 316L stainless steel used in PWR primary pipes [J]. Chin. J. Eng., 2017, 39: 1355
汪家梅, Arjmand F, 杜东海等. 压水堆一回路主管道316L不锈钢的电化学腐蚀行为 [J]. 工程科学学报, 2017, 39: 1355
17 Sun H, Wu X W, Han E-H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 59: 334
18 Figueiredo C D A, Bosch R W, Vankeerberghen M. Electrochemical investigation of oxide films formed on nickel alloys 182, 600 and 52 in high temperature water [J]. Electrochim. Acta, 2011, 56: 7871
19 Bosch R W, Vankeerberghen M. In-pile electrochemical tests of stainless steel under PWR conditions: Interpretation of electrochemical impedance spectroscopy data [J]. Electrochim. Acta, 2007, 52: 7538
20 Li X H, Wang J Q, Han E-H, et al. Corrosion behavior for Alloy 690 and Alloy 800 tubes in simulated primary water [J]. Corros. Sci., 2013, 67: 169
21 Xu J, Shoji T. The corrosion behavior of Alloy 182 in a cyclic hydrogenated and oxygenated water chemistry in high temperature aqueous environment [J]. Corros. Sci., 2016, 104: 248
22 Hao X C, Su P, Xiao K, et al. Influence of NaCl concentration on corrosion products of weathering steel [J]. Corros. Prot., 2009, 30: 297
郝献超, 苏鹏, 肖葵等. 不同NaCl浓度对耐候钢腐蚀产物的影响 [J]. 腐蚀与防护, 2009, 30: 297
23 Zheng J Q, Gong L H, Guo W M, et al. Effect of temperature and dissolved oxygen on corrosion properties of 304 stainless steel in seawater [J]. Corros. Prot., 2011, 32: 708
郑家青, 龚利华, 郭为民等. 不同温度下溶解氧对304不锈钢在海水中腐蚀性能的影响 [J]. 腐蚀与防护, 2011, 32: 708
24 Li J, Dong C F, Li X G, et al. Galvanic corrosion behaviors of Q235-304L couple in Na2S solution [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 308
李君, 董超芳, 李晓刚等. Q235-304L电偶对在Na2S溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2006, 26: 308
25 Mansfeld F. The relationship between galvanic current and dissolution rates [J]. Corrosion, 1973, 29: 403
[1] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[5] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[6] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[7] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[8] HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[9] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[12] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[13] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[14] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[15] Zhiying ZHANG, Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG. Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
No Suggested Reading articles found!