Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 602-608    DOI: 10.11902/1005.4537.2020.220
Current Issue | Archive | Adv Search |
Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel
FENG Yanpeng1, ZHANG Xian2, WU Kaiming2, YANG Miao1()
1.School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
2.Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(11156KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A medium carbon steel was heat treated by one-step bainite isothermal, two-step bainite isothermal- and quenching-treatment respectively, and the microstructure, phase distribution, corrosion performance and electrochemical properties of the different heat treated steels were characterized. The results show that compared with the one-step bainite isothermal- and quenching-treated steels, the ultrafine bainite steel after the two-step bainite isothermal treatment has a more uniform structure with smaller proportion of retained austenite. The bainite ferrite phase in the ultrafine bainite steel is selectively dissolved due to the micro-galvanic effect between bainite ferrite and massive retained austenite, resulting in the initiation and propagation of pitting corrosion along the lath direction. However, uniformly distributed film-like retained austenite hinders the further development of corrosion. The electrochemical test results show that the two-step bainite isothermal treated steel has the best corrosion resistance, and the martensitic steel has the worst corrosion resistance.

Key words:  ultra-fine bainite steel      heat treatment process      microstructure      corrosion resistance     
Received:  02 November 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51601138);Foundation of the State Key Laboratory of Refractories and Metallurgy(2018QN18)
Corresponding Authors:  YANG Miao     E-mail:  yangmiao@whut.edu.cn
About author:  YANG Miao, E-mail: yangmiao@whut.edu.cn

Cite this article: 

FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 602-608.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.220     OR     https://www.jcscp.org/EN/Y2021/V41/I5/602

Fig.1  OM images (a~c) and SEM images (d~f) for one-step bainite steel (a, d), two-step bainite steel (b, e), and martensitic steel (c, f)
Fig.2  XRD patterns of the experimental steels
Fig.3  In-situ morphologies of one-step bainite steel (a, d), two-step bainite steel (b, e) and martensitic steel (c, f) after corrosion for 10 min (a~c) and 60 min (d~f)
Fig.4  Potentiodynamic polarization plots of the experimental steels
MaterialI0 / A·cm-2E0 / VV / mm·a-1
One-step bainite steel1.67×10-5-0.590.20
Two-step bainite steel7.79×10-6-0.400.09
Martensitic steel4.46×10-5-0.550.52
Table 1  Potential polarization Tafel fitting values of the experimental steels
Fig.5  Nyquist (a) and Bode (b, c) plots curves of the experimental steels
MaterialRsΩ·cm2CPE,YoFreq power, nRctΩ·cm2
One-step bainite steel31.310.00100.691458
Two-step bainite steel30.310.00110.732176
Martensitic steel32.930.00150.71834
Table 2  Fitting values of AC impedance circuit of the experimental steels
Fig.6  Initial corrosion mechanism diagram of one-step bainite steel (a, d), two-step bainite steel (b, e) and martensitic steel (c, f)
1 Zhang F C, Yang Z N. Development of and perspective on high-performance nanostructured bainitic bearing steel [J]. Engineering, 2019, 5: 319
2 Malitckii E, Yagodzinskyy Y, Vilaҫa P. Role of retained austenite in hydrogen trapping and hydrogen-assisted fatigue fracture of high-strength steels [J]. Mater. Sci. Eng., 2019, 760A: 68
3 Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite [J]. Mater. Sci. Technol., 2002, 18: 279
4 Caballero F G, Miller M K, Babu S S, et al. Atomic scale observations of bainite transformation in a high carbon high silicon steel [J]. Acta Mater., 2007, 55: 381
5 Wu H B, Ju B, Che Y J. Effect of austempering temperature on the microstructure evolution of ultrafine bainite steel [J]. Chin. J. Eng., 2016, 38: 1741
武会宾, 巨彪, 车英建. 等温温度对超细贝氏体钢组织演变规律的影响 [J]. 工程科学学报, 2016, 38: 1741
6 Garcia-Mateo C, Caballero F G. Ultra-high-strength bainitic steels [J]. ISIJ Int., 2005, 45: 1736
7 Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Development of hard bainite [J]. ISIJ Int., 2003, 43: 1238
8 Bhadeshia H K D H. High performance bainitic steels [J]. Mater. Sci. Forum, 2005, 500/501: 63
9 Hase K, Garcia-Mateo C, Bhadeshia H K D H. Bimodal size-distribution of bainite plates [J]. Mater. Sci. Eng., 2006, 438-440A: 145
10 Wan X L, Hu F, Cheng L, et al. Effect of retained austenite on plasticity and toughness of micro/nano bainitic steel [J]. J. Iron Steel Res., 2019, 31: 305
万响亮, 胡锋, 成林等. 残留奥氏体对微纳贝氏体钢塑韧性的影响 [J]. 钢铁研究学报, 2019, 31: 305
11 Kim S J, Park J H, Kim K Y. Effect of microstructure on sulfide scale formation and corrosion behavior of pressure vessel steel in sour environment [J]. Mater. Charact., 2016, 111: 14
12 Wang Z F, Li P H, Guan Y, et al. The corrosion resistance of ultra-low carbon bainitic steel [J]. Corros. Sci., 2009, 51: 954
13 Qu S P, Pang X L, Wang Y B, et al. Corrosion behavior of each phase in low carbon microalloyed ferrite-bainite dual-phase steel experiments and modeling [J]. Corros. Sci., 2013, 75: 67
14 Wei J, Dong J H, Zhou Y T, et al. Influence of the secondary phase on micro galvanic corrosion of low carbon bainitic steel in NaCl solution [J]. Mater. Charact., 2018, 139: 401
15 Kazum O, Bobby Kannan M, Beladi H, et al. Aqueous corrosion performance of nanostructured bainitic steel [J]. Mater. Des., 2014, 54: 67
16 Rovere C A D, Santos F S, Silva R, et al. Influence of long-term low-temperature aging on the microhardness and corrosion properties of duplex stainless steel [J]. Corros. Sci., 2013, 68: 84
17 Hui W J, Tian P, Dong H, et al. Influence of deformation temperature on the microstructure transformation in medium carbon steel [J]. Acta Metall. Sin., 2005, 41: 611
惠卫军, 田鹏, 董瀚等. 形变温度对中碳钢组织转变的影响 [J]. 金属学报, 2005, 41: 611
18 Qi Z F. Transformation of supercooling austenite in carbon steel [J]. Trans. Mater. Heat Treat., 2017, 38(4): 1
戚正风. 碳钢过冷奥氏体的转变 [J]. 材料热处理学报, 2017, 38(4): 1
19 Wei J, Dong J H, Ke W, et al. Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution [J]. Corrosion, 2015, 71: 1467
20 Caballero F G, Miller M K, Garcia-Mateo C. Carbon supersaturation of ferrite in a nanocrystalline bainitic steel [J]. Acta Mater., 2010, 58: 2338
[1] SHI Jian, HU Xuewen, ZHANG Daoliu, CAO Huidan, HE Bo, PU Hong, GUO Rui, WANG Fei. Influence of Microstructure on Corrosion Resistance of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[2] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[3] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[4] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[5] WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[6] WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[7] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[8] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[9] WANG Jia, LIU Xiaoyong, GAO Lingqing, ZHA Xiaoqin, LUO Xianfu, ZHANG Wenli, ZHANG Hengkun. Hydrogen Absorption Behavior of Near α Ti70 Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[10] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[11] WANG Xiaoge, GAO Kewei, YAN Luchun, YANG Huisheng, PANG Xiaolu. Effect of Ce on Corrosion Resistance of Films of ZnAlCe-layered Double Hydroxides on Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[12] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[13] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
No Suggested Reading articles found!