Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 288-294    DOI: 10.11902/1005.4537.2021.086
Current Issue | Archive | Adv Search |
NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature
YI Pu1, HOU Lifeng1, DU Huayun1, LIU Xiaoda1, JIA Jianwen1, LI Yang2, ZHANG Wei2, XU Fanghong2, WEI Yinghui1()
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.State Key Laboratory of Advanced Stainless Steel, Taiyuan Iron and Steel (Group) Co. Ltd. , Taiyuan 030003, China
Download:  HTML  PDF(15216KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Waste incinerators are faced with many high-temperature corrosion problems because they work at high temperatures all year round. The NaCl induced hot corrosion behavior of three novel austenitic stainless steels 254SMo, 904L and 317L in NaCl salt at 750, 850 and 950 ℃ was studied in order to simulate the corrosion emerged on the fire side of tubes in waste incinerator by means of corrosion kinetic measurement, SEM/EDS and XRD. The results show that the three austenitic stainless steels show mass loss during the hot corrosion process, their corrosion resistance may be ranked as follows: 254SMo stainless steel >904L stainless steel >317L stainless steel, whilst their mass loss increases with the increase of temperature and time. The addition of Mo can alleviate the corrosion of the steels in the chloride salt. Serious intergranular corrosion occurred in the three austenitic stainless steels at 850 and 950 ℃. The hot corrosion reaction follows the so called “active oxidation” mechanism, and the generated chlorine gas will participate in the reaction cycle.

Key words:  austenitic stainless steel      hot corrosion      corrosion kinetics      chlorination     
Received:  19 April 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52071227);Shanxi Province Platform Base Construction Project(2018D121003);the Central Leading Local Science and Technology Development Special Project(YDZX20191400002094);Shanxi Province Science and Technology Major Project(20191102006)
Corresponding Authors:  WEI Yinghui     E-mail:  yhwei_tyut@126.com
About author:  WEI Yinghui, E-mail: yhwei_tyut@126.com

Cite this article: 

YI Pu, HOU Lifeng, DU Huayun, LIU Xiaoda, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, WEI Yinghui. NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 288-294.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.086     OR     https://www.jcscp.org/EN/Y2022/V42/I2/288

SteelCSiMnPSCrNiMoCuNBFe
254SMo0.0100.430.400.0210.00119.9817.856.060.610.210.004Bal.
904L0.0110.451.280.0190.00120.0824.224.321.410.06---Bal.
317L0.0190.571.250.0240.00118.2913.323.150.050.050.004Bal.
Table 1  Compositions of three austenitic stainless steels used in the experiments (mass fraction / %)
Fig.1  Mass losses of 254SMo, 904L and 317L stainless steels during hot corrosion at 750 ℃ (a), 850 ℃ (b) and 950 ℃ (c)
Fig.2  Total mass losses of three stainless steels after 60 h hot corrosion at different temperatures
Fig.3  XRD patterns of 254SMo (a), 904L (b) and 317L (c) stainless steels before and after hot corrosion for 60 h at different temperatures
Fig.4  SEM images of 254SMo (a~c), 904L (b~f) and 317L (g~i) stainless steels after hot corrosion at 750 ℃ (a, d, g), 850 ℃ (b, e, h) and 950 ℃ (c, f, i) for 60 h
Fig.5  SEM surface images of 254SMo (a), 904L (b) and 317L (c) stainless steels after hot corrosion at 850 ℃ in NaCl and corresponding EDS analysis results of the marked areas
Fig.6  Cross-sectional morphologies of 254SMo (a~c), 904L (b~f) and 317L (g~i) stainless steels after hot corrosion at 750 ℃ (a, d, g), 850 ℃ (b, e, h) and 950 ℃ (c, f, i) for 60 h
1 Makarichi L, Jutidamrongphan W, Techato K A. The evolution of waste-to-energy incineration: A review [J]. Renew. Sust. Energy Rev., 2018, 91: 812
2 Fu L Q. Causes and preventive measures of boiler heating surface corrosion in domestic waste incineration plant [J]. Metall. Collect., 2017, (5): 9
傅玲琼. 生活垃圾焚烧厂锅炉受热面腐蚀原因及预防措施 [J]. 工程技术研究, 2017, (5): 9
3 Jiang X G, Liu X B. Research progress and direction thinking on corrosion of key heat transfer components in waste incineration boilers [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 205
蒋旭光, 刘晓博. 垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考 [J]. 中国腐蚀与防护学报, 2020, 40: 205
4 Morales M, Chimenos J M, Fernández A I, et al. Materials selection for superheater tubes in municipal solid waste incineration plants [J]. J. Mater. Eng. Perform., 2014, 23: 3207
5 Phongphiphat A, Ryu C, Finney K N, et al. Ash deposit characterisation in a large-scale municipal waste-to-energy incineration plant [J]. J. Hazard. Mater., 2011, 186: 218
6 Larsson E, Liske J, Persdotter A, et al. The influence of KCl and HCl on the high-temperature oxidation of a Fe-2.25Cr-1Mo steel at 400 ℃ [J]. Oxid. Met., 2020, 93: 29
7 Hodge F G. The history of solid-solution-strengthened Ni alloys for aqueous corrosion service [J]. JOM, 2006, 58: 28
8 Gomez-Vidal J C, Fernandez A G, Tirawat R, et al. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests [J]. Sol. Energy Mater. Sol. Cells, 2017, 166: 222
9 Gomez-Vidal J C, Fernandez A G, Tirawat R, et al. Corrosion resistance of alumina forming alloys against molten chlorides for energy production. II: Electrochemical impedance spectroscopy under thermal cycling conditions [J]. Sol. Energy Mater. Sol. Cells, 2017, 166: 234
10 Zhang S C, Jiang Z H, Li H B, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Mater. Charact., 2018, 137: 244
11 Zhang S C, Jiang Z H, Li H B, et al. Detection of susceptibility to intergranular corrosion of aged super austenitic stainless steel S32654 by a modified electrochemical potentiokinetic reactivation method [J]. J. Alloy. Compd., 2017, 695: 3083
12 Song Z G, Pu E X. Precipitated phases of superaustenitic stainless steel 654SMO [J]. J. Iron Steel Res. Int., 2017, 24: 743
13 Olsson J, Wasielewska W. Applications and experience with a Superaustenitic 7Mo stainless steel in hostile environments [J]. Mater. Corros., 1997, 48: 791
14 Indacochea J E, Smith J L, Litko K R, et al. High-temperature oxidation and corrosion of structural materials in molten chlorides [J]. Oxid. Met., 2001, 55: 1
15 Zhang S C, Li H B, Jiang Z H, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment [J]. Corros. Sci., 2020, 163: 108295
16 Yang B, Zhong Z Q, Huang Q X, et al. Research development of high temperature chlorine corrosion in waste incineration boilers [J]. Guangdong Electr. Power, 2016, 29(6): 5
杨波, 钟志强, 黄巧贤等. 垃圾焚烧锅炉的高温氯腐蚀研究进展 [J]. 广东电力, 2016, 29(6): 5
17 Zahs A, Spiegel M, Grabke H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400~700 ℃ [J]. Corros. Sci., 2000, 42: 1093
18 Li Y S, Spiegel M, Shimada S. Corrosion behaviour of various model alloys with NaCl-KCl coating [J]. Mater. Chem. Phys., 2005, 93: 217
19 Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
20 Mendiratta M G, Parthasarathy T A, Dimiduk D M. Oxidation behavior of αMo-Mo3Si-Mo5SiB2 (T2) three phase system [J]. Intermetallics, 2002, 10: 225
21 Li H B, Zhang B B, Jiang Z H, et al. A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air [J]. J. Alloy. Compd., 2016, 686: 326
22 Ishitsuka T, Nose K. Stability of protective oxide films in waste incineration environment-solubility measurement of oxides in molten chlorides [J]. Corros. Sci., 2002, 44: 247
23 Galetz M C, Rammer B, Schütze M. Refractory metals and nickel in high temperature chlorine‐containing environments‐thermodynamic prediction of volatile corrosion products and surface reaction mechanisms: a review [J]. Mater. Corros., 2015, 66: 1206
24 Chen L Y, Lan H, Huang C B, et al. Hot corrosion behavior of porous nickel-based alloys containing molybdenum in the presence of NaCl at 750 ℃ [J]. Eng. Fail. Anal., 2017, 79: 245
[1] WU Jiajie, WANG Yanli. Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[2] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[3] YIN Yangyang, LIU Jianfeng, MIAO Keji, WANG Ting, NING Kai, PAN Weiguo, YUAN Binxia, YIN Shibin. Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[4] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[5] XIONG Yi, LIU Guangming, ZHAN Fuyuan, MAO Xiaofei, LUO Qin, HONG Jia, NI Jinfei, LIU Yongqiang. Hot Corrosion and Failure Behavior of Three Thermal Spraying Coatings in Simulated Atmosphere/Coal Ash Environment[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[6] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[7] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[8] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[9] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] Hao CHEN,Qing CHEN,Li XIN,Long SHI,Shenglong ZHU,Fuhui WANG. Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[11] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[12] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[13] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[14] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[15] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
No Suggested Reading articles found!