Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (3): 341-345    DOI: 10.11902/1005.4537.2020.090
Current Issue | Archive | Adv Search |
Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System
ZUO Yong1,2,3(), QIN Yueqiang1,3, SHEN Miao1,2, YANG Xinmei1,2,3
1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
Download:  HTML  PDF(3504KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Galvanic corrosion should be considered when dissimilar metallic materials in contact with each other in a molten salt system of high ionic conductivity. Corrosion electrochemistry and immersion corrosion tests indicated that the difference of the corrosion potentials of different metal materials can be decreased or diminished by coupling Cr2+/Cr3+ into the 46.5%LiF-11.5%NaF-42.0%KF (in mole fraction) molten salt. Thus, the galvanic corrosion behavior between different metal materials can be effectively inhibited.

Key words:  molten salt      galvanic corrosion      redox buffering ion pair      corrosion mitigation     
Received:  25 May 2020     
ZTFLH:  O646.6  
Fund: Strategic Priority Research Program of Chinese Academy of Sciences(XDA21000000)
Corresponding Authors:  ZUO Yong     E-mail:  zuoyong@sinap.ac.cn
About author:  ZUO Yong, E-mail: zuoyong@sinap.ac.cn

Cite this article: 

ZUO Yong, QIN Yueqiang, SHEN Miao, YANG Xinmei. Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 341-345.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.090     OR     https://www.jcscp.org/EN/Y2021/V41/I3/341

Fig.1  Polarization curves of different metal materials in molten FliNaK (a), molten FLiNaK+680 μg/g CrF3 (b) and molten FLiNaK+680 μg/g CrF3+720 μg/g CrF2 (c)
Fig.2  Variation of the corrosion potentials in molten FLiNaK+1000 μg/g CrF3 with the adding of CrF2
Fig.3  Galvanic corrosion current-time curves of 316LSS vs GH3535 alloy in different molten salt systems
Fig.4  Cross-sectional image of the 316LSS (connected with equal area GH3535) exposed in molten FliNaK (a), molten FLiNaK+300 μg/g CrF3 (b) and molten FLiNaK+680 μg/g CrF3+720 μg/g CrF2 (c) for 24 h
1 Williams D F. Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop [R]. Tennessee: Oak Ridge National Laboratory, 2006
2 Gehin J C, Powers J J. Liquid fuel molten salt reactors for thorium utilization [J]. Nucl. Technol., 2016, 194: 152
3 Farmer J, El-dasher B, De Caro M S, et al. Corrosion of ferritic steels in high temperature molten salt coolants for nuclear applications [A]. MRS Fall Meeting [C]. Bosten, 2008
4 Dai Z M. 17-Thorium molten salt reactor nuclear energy system (TMSR) [A]. Dolan T J ed. Molten Salt Reactors and Thorium Energy [M]. Duxford, UK: Woodhead Publishing, 2017: 531-540
5 Vignarooban K, Xu X H, Arvay A, et al. Heat transfer fluids for concentrating solar power systems-A review [J]. Appl. Energy, 2015, 146: 383
6 Mohan G, Venkataraman M, Gomez-Vidal J, et al. Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides [J]. Solar Energy, 2018, 176: 350
7 Myers P D, Goswami D Y. Thermal energy storage using chloride salts and their eutectics [J]. Appl. Thermal Eng., 2016, 109: 889
8 Romatoski R R, Hu L W. Fluoride salt coolant properties for nuclear reactor applications: A review [J]. Ann. Nucl. Energy, 2017, 109: 635
9 Jiang L, Ye X X, Wang D J, et al. Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys [J]. Nucl. Sci. Techniq., 2020, 31: 6
10 Allen T R, Sridharan K, Tan L, et al. Materials challenges for Generation IV nuclear energy systems [J]. Nucl. Technol., 2008, 162: 342
11 Zuo Y, Cao M P, Shen M, et al. Effect of Mg on corrosion of 316H stainless steel in molten salts MgCl2-NaCl-KCl [J]. J. Chin. Soc. Corros. Prot., 2020, 41: 80
左勇, 曹明鹏, 申淼等. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 41: 80
12 Ding X B, Sun H, Yu G J, et al. Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 543
丁祥彬, 孙华, 俞国军等. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 543
13 Cheng W J, Sellers R S, Anderson M H, et al. Zirconium effect on the corrosion behavior of 316l stainless steel alloy and hastelloy-N superalloy in molten fluoride salt [J]. Nucl. Technol., 2013, 183: 248
14 Fernández A G, Cabeza L F. Corrosion monitoring and mitigation techniques on advanced thermal energy storage materials for CSP plants [J]. Solar Energy Mater. Solar Cells, 2019, 192: 179
15 Zhang J S, Forsberg C W, Simpson M F, et al. Redox potential control in molten salt systems for corrosion mitigation [J]. Corros. Sci., 2018, 144: 44
16 Wang Y L, Liu H J, Zeng C L. Galvanic corrosion of pure metals in molten fluorides [J]. J. Fluor. Chem., 2014, 165: 1
17 Zhang B H, Cong W B, Yang P. Electrochemical Corrosion and Protection for Metals [M]. Beijing: Chemical Industry Press, 2005
张宝宏, 丛文博, 杨萍. 金属电化学腐蚀与防护 [M]. 北京: 化学工业出版社, 2005
18 Olander D. Redox condition in molten fluoride salts: Definition and control [J]. J. Nucl. Mater., 2002, 300: 270
19 Del Cul G D, Williams D F, Toth L M. Redox potential of novel electrochemical buffers useful for corrosion prevention in molten fluorides [A]. Proceedings of the 13th International Symposium [C]. Pennington, 2002
20 Gibilaro M, Massot L, Chamelot P. A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control [J]. Electrochim. Acta, 2015, 160: 209
21 Zuo Y, Huang H, Li X Y, et al. Experimental installation for molten salt electrochemistry [P]. Chinese patent: 102553664, 2012
左勇, 黄鹤, 李晓云等. 熔盐电化学实验装置 [P]. 中国专利: 102553664, 2012)
22 Zuo Y, Wang Y, Tang R, et al. A kind of FLiNaK molten salts and its preparation method, reactor and preparation apparatus [P]. Chinese Patent: 108376570, 2018
左勇, 汪洋, 汤睿等. 一种FLiNaK熔盐及其制备方法、反应器和制备装置 [P]. 中国专利: 108376570, 2018)
23 Qin Y Q, Zuo Y, Shen M. Corrosion inhibition of 316l stainless steel in FLiNaK-CrF3/CrF2 redox buffering molten salt system [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 182
秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 182
24 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008
曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008
[1] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[4] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[5] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[6] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[7] HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[8] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[9] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[10] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[11] Yanjie LIU,Zhenyao WANG,Binbin WANG,Yan CAO,Yang HUO,Wei KE. Mechanism of Galvanic Corrosion of Coupled 2024 Al-alloy and 316L Stainless Steel Beneath a Thin Electrolyte Film Studied by Real-time Monitoring Technologies[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[12] Xin ZHAO,Yulong HU,Fu DONG,Xiaodong ZHANG,Zhiqiao WANG. Effect of Moistened Electrical Insulation on Galvanic Corrosion Behavior of Dissimilar Metals[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
[13] Xiangbin DING,Hua SUN,Guojun YU,Xingtai ZHOU. Corrosion Behavior of Hastelloy N and 316L Stainless Steel in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[14] Qiang WEI,Moucheng LI,Jianian SHEN. Galvanic Corrosion Behavior of Two Stainless Steels in Simulated Muffler Environments[J]. 中国腐蚀与防护学报, 2015, 35(3): 233-238.
[15] ZHAO Xiaohong, GUO Quanzhong, DU Keqin, GUO Xinghua, WANG Yong. Galvanic Corrosion Behavior of Couples of Hot Rolled Steel SS400 and Cold Rolled Steel ST12 with Two Coatings[J]. 中国腐蚀与防护学报, 2015, 35(1): 86-90.
No Suggested Reading articles found!