Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 218-226    DOI: 10.11902/1005.4537.2021.080
Current Issue | Archive | Adv Search |
Microstructure Evolution and Electrochemical Passivation Behavior of FeCrMn1.3NiAlx High Entropy Alloys
ZHANG Hengkang, HUANG Feng(), XU Yunfeng, YUAN Wei, QIU Yao, LIU Jing
State Key Laboratory of Refractory Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(11595KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Four high entropy alloys of FeCrMn1.3NiAlx (x= 0, 0.25, 0.5, 0.75) with different Al content were smelted by vacuum magnetic suspension method. The effect of Al content on the microstructure and passivation behavior of the as-cast alloys FeCrMn1.3NiAlx in 0.5 mol/L H2SO4 solution was investigated by means of XRD, FE-SEM, SKPFM, EPMA and potentiodynamic polarization technique. The results show that the FeCrMn1.3NiAlx (x=0, 0.25) alloy presents a two-phase microstructure of fcc (Fe-Mn-Ni)+bcc (Fe-Cr-Mn). The Fe-Cr-Mn phase of bcc structure has higher electrochemical activity, and therewith is preferred to dissolve, which results in two obvious passivation-potential and -current peaks. As the Al addition reaches x=0.5, the fcc phase almost entirely disappeared in the alloy, therefore the alloy composed of the bcc Fe-Cr-Mn phase with uniformly distributed particles and strips of b2 phase (Al-Ni-Mn). Due to the difference in electrochemical activity of the above two phases is not much, so that, the alloy present only one passivation potential and passivation current peak. Meanwhile the new hard ρ-phase of higher electrochemical activity emerges in the alloy, which resulted in lower passivation potential and smaller passivation current density. The ρ-phase disappears for the alloy with x=0.75 Al, correspondingly, the low passivation potential peak also disappears. The addition of Al can affect the passivation behavior of FeCrMn1.3NiAlx high entropy alloys in 0.5 mol/L H2SO4 solution by changing the microstructure, composition and distribution of phases in local-areas, so as the electrochemical activity of FeCrMn1.3NiAlx high entropy alloys. With the increase of Al, the passivation current density of the alloy increases due to the poor passivation performance of b2 phase, which in turn reduces the passivation performance of the alloys.

Key words:  high entropy alloy      microstructure      potentiostatic polarization      passivation behavior     
Received:  16 April 2021     
ZTFLH:  TG174  
Fund: Natural Science Foundation of Hubei Province(2021CFA023)
Corresponding Authors:  HUANG Feng     E-mail:  huangfeng@wust.edu.cn
About author:  HUANG Feng, E-mail: huangfeng@wust.edu.cn

Cite this article: 

ZHANG Hengkang, HUANG Feng, XU Yunfeng, YUAN Wei, QIU Yao, LIU Jing. Microstructure Evolution and Electrochemical Passivation Behavior of FeCrMn1.3NiAlx High Entropy Alloys. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 218-226.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.080     OR     https://www.jcscp.org/EN/Y2022/V42/I2/218

Fig.1  XRD patterns of FeCrMn1.3NiAlx alloy
Fig.2  BSE images of FeCrMn1.3NiAlx alloy: (a) Al0, (b) Al0.25, (c) Al0.5, (d) enlarged view of Al0.5, (e) Al0.75, (f) enlarged view of Al0.75
Fig.3  FE-EPMA diagrams of each element in the alloy: (a) Al0, (b) Al0.25, (c) Al0.5, (d) Al0.75
AlloyfccbccOther
Al0Fe-Mn-NiFe-Cr-Mn
Al0.25Fe-Mn-NiFe-Cr-Mn
Al0.5

Fe-Cr-Mn

Al-Ni-Mn (b2 phase)

Fe6Cr5Mn8 (ρ phase)
Al0.75

Fe-Cr-Mn

Al-Ni-Mn (b2 phase)

Table 1  Main elements in each phase of HEAs
Fig.4  SKPFM morphology (a1, a2~d1, d2) and volta potential diagram (a3~d3) of the FeCrMn1.3NiAlx alloy: (a) Al0, (b) Al0.25, (c) Al0.5, (d) Al0.75
Fig.5  Polarization curves of FeCrMn1.3NiAlx alloy in 0.5 mol/L H2SO4 solution
Fig.6  Magnification of the FeCrMn1.3NiAlxalloy near the passivation potential of 0.5 mol/L H2SO4: (a) Al0, (b) Al0.25, (c) Al0.5, (d) Al0.75
AlloyPassivation current density / A·cm-2Passivation potential VMaintaining passivity current density / A·cm-2EcorrVIcorrA·cm-2
Al01#0.008-0.2301.6×10-4-0.3951.06×10-3
2#0.005-0.170
Al0.251#0.027-0.2412.1×10-5-0.4164.02×10-3
2#0.019-0.165
Al0.51#0.009-0.4095.9×10-5-0.4614.15×10-3
2#0.089-0.115
Al0.751#0.100-0.0943.2×10-5-0.4684.16×10-3
Table 2  Passivation capability parameters in polarization curves of alloys
Fig.7  3D microstructure of FeCrMn1.3NiAlx alloy after potentiostatic polarization: (a) Al0, (b) Al0.25, (c) Al0.5, (d) Al0.75
1 Yeh J W, Chen S K, Lin S J. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
3 Zhang S, Wu C L, Zhang C H, et al. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance [J]. Opt. Laser Technol., 2016, 84: 23
4 He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
5 Munitz A, Meshi L, Kaufman M J. Heat treatments' effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy [J]. Mater. Sci. Eng., 2017, 689A: 384
6 Hu Y T, Dong P F, Jiang L, et al. Corrosion behavior of riveted joints of TC4 Ti-alloy and 316L stainless steel in simulated marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 167
胡玉婷, 董鹏飞, 蒋立等. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 167
7 Zhang H, Du N, Zhou W J, et al. Effect of Fe3+ on pitting corrosion of stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 517
张浩, 杜楠, 周文杰等. 模拟海水溶液中Fe3+对不锈钢点蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 517
8 Sun J L, Zou D, Jin J, et al. Localized corrosion resistance of three commonly-used stainless steels [J]. Chin. J. Mater. Res., 2017, 31: 665
孙京丽, 邹丹, 金晶等. 三种常用不锈钢的耐局部腐蚀性能 [J]. 材料研究学报, 2017, 31: 665
9 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
10 Qiu Y, Thomas S, Gibson M A, et al. Corrosion of high entropy alloys [J]. npj Mater. Degrad., 2017, 1: 15
11 Massoud T, Maurice V, Klein L H, et al. Intergranular effects on the local electronic properties of the passive film on nickel [J]. Corros. Sci., 2013, 69: 245
12 Bettini E, Kivisäkk U, Leygraf C, et al. Study of corrosion behavior of a 2507 super duplex stainless steel: Influence of quenched-in and isothermal nitrides [J]. Int. J. Electrochem. Sci., 2013, 9: 61
13 Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution [J]. Corros. Sci., 2018, 134: 131
14 Lee C P, Chang C C, Chen Y Y, et al. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments [J]. Corros. Sci., 2008, 50: 2053
15 Zhang X, Cui H Z, Wang M L, et al. Effect of Al content on microstructure and corrosion resistance of AlxCoCrFeNi high entropy alloys [J]. Trans. Mater. Heat Treat., 2018, 39(12): 29
张雪, 崔洪芝, 王明亮等. Al含量对AlxCoCrFeNi系高熵合金组织和耐蚀性能的影响 [J]. 材料热处理学报, 2018, 39(12): 29
16 Li B Y, Peng K, Hu A P, et al. Structure and properties of FeCoNiCrCu0.5Alx high-entropy alloy [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 735
17 Wang Y, Li M Y, Sun L L, et al. Microstructure and corrosion property of FeCrNiCo (Cu/Mn) high entropy alloys [J]. Chin. J. Nonferrous Met., 2020, 30(1): 94
王勇, 李明宇, 孙丽丽等. FeCrNiCo(Cu/Mn) 高熵合金组织及腐蚀性能 [J]. 中国有色金属学报, 2020, 30(1): 94
18 Chen S T, Tang W Y, Kuo Y F, et al. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys [J]. Mater. Sci. Eng., 2010, 527A: 5818
19 Zhang W W, Li R B. Study of microstructure and mechanical properties of FeNiMnCr0.75Alx high-entropy alloys [J]. Nonferrous Met. Mater. Eng., 2018, 39(3): 18
张威威, 李荣斌. 多主元FeNiMnCr0.75Alx高熵合金微观结构和力学性能的研究 [J]. 有色金属材料与工程, 2018, 39(3): 18
20 He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
21 Sathirachinda N, Pettersson R, Wessman S, et al. Study of nobility of chromium nitrides in isothermally aged duplex stainless steels by using SKPFM and SEM/EDS [J]. Corros. Sci., 2010, 52: 179
22 Kao Y F, Lee T D, Chen S K, et al. Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids [J]. Corros. Sci., 2010, 52: 1026
23 Wang Y, Cheng X Q, Li X G. Electrochemical behavior and compositions of passive films formed on the constituent phases of duplex stainless steel without coupling [J]. Electrochem. Commun., 2015, 57: 56
24 Tsai W T, Chen J R. Galvanic corrosion between the constituent phases in duplex stainless steel [J]. Corros. Sci., 2007, 49: 3659
25 Cheng X Q, Wang Y, Dong C F, et al. The beneficial galvanic effect of the constituent phases in 2205 duplex stainless steel on the passive films formed in a 3.5%NaCl solution [J]. Corros. Sci., 2018, 134: 122
[1] LEI Zheyuan, WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Distribution on Pitting Initiation and Propagation of 2002 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[2] WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[3] WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[4] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[5] SHI Jian, HU Xuewen, ZHANG Daoliu, CAO Huidan, HE Bo, PU Hong, GUO Rui, WANG Fei. Influence of Microstructure on Corrosion Resistance of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[6] WANG Jia, LIU Xiaoyong, GAO Lingqing, ZHA Xiaoqin, LUO Xianfu, ZHANG Wenli, ZHANG Hengkun. Hydrogen Absorption Behavior of Near α Ti70 Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[7] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[8] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[9] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[10] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[11] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[12] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[13] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[14] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[15] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
No Suggested Reading articles found!