Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 877-882    DOI: 10.11902/1005.4537.2020.201
Current Issue | Archive | Adv Search |
Effect of Laser Surface Melting on Cavitation Erosion of Manganese-nickel-aluminum Bronze in 3.5%NaCl Solution
SONG Qining1,2(), WU Zhuyu2, LI Huilin2, TONG Yao2, XU Nan2, BAO Yefeng2
1.Engineering Research Center of Dredging Technology of Education, Hohai University, Changzhou 213022, China
2.College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
Download:  HTML  PDF(5974KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Laser remelting (LSM) was applied on cast high-Mn aluminum bronze (MAB). Then the effect of LSM on the microstructure, corrosion and cavitation erosion behavior in 3.5%NaCl solution for the cast MAB was studied via microstructure observation, electrochemical test and ultrasonic vibration cavitation test. The results showed that in comparison with the as cast bronze, the LSM bronze presents a microstructure of much finer and much homogeneously distributed crystallites, as well as a hardness of 45% higher. During electrochemical test, the LSM bronze shows more or less the same anodic and cathodic processes as that of the as cast one, however the cast bronze had a lower corrosion potential, indicating higher corrosion tendency. After cavitation erosion test in 3.5%NaCl solution for 5 h the weight loss rate of the LSM bronze was only 3/5 of that of the as cast one. Accordingly, the surface damage of the LSM bronze was much lighter with a similar damage degree everywhere, whilst the surface roughness of the LSM bronze was obviously smaller than that of the as cast one. In 3.5%NaCl solution, the synergy between corrosion and cavitation erosion deteriorated the surface damage. For both the as cast and the LSM bronze, the mechanical impact was the dominated factor for the cavitation erosion damage. For the cast bronze, the mass loss caused by the pure cavitation erosion accounted for 71.1% of the total mass loss and 50.8% for the LSM bronze.

Key words:  Manganese-nickel-aluminum bronze      laser surface melting      corrosion      cavitation erosion      synergy     
Received:  23 October 2020     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51601058);Fundamental Research Funds for the Central Universities of China(B210202129);Natural Science Foundation of Jiangsu Province(BK20191161)
Corresponding Authors:  SONG Qining     E-mail:  qnsong@hhu.edu.cn
About author:  SONG Qining, E-mail: qnsong@hhu.edu.cn

Cite this article: 

SONG Qining, WU Zhuyu, LI Huilin, TONG Yao, XU Nan, BAO Yefeng. Effect of Laser Surface Melting on Cavitation Erosion of Manganese-nickel-aluminum Bronze in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 877-882.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.201     OR     https://www.jcscp.org/EN/Y2021/V41/I6/877

Fig.1  Microstructures of cross section (a), matrix (b), LSM layer (c) and heat affected zone (d) of LSM MAB
Fig.2  Mass loss (a) and mass loss rate (b) changes of cast and LSM MAB during cavitation erosion in distilled water and 3.5%NaCl solution
Fig.3  Polarization curves of cast and LSM MAB in 3.5%NaCl solution under static and cavitation erosion conditions
SampleStaticCavitation
Icorr / A·cm-2Ecorr / mVv / mg·cm-2·h-1I'corr / A·cm-2E'corr / mVv / mg·cm-2·h-1
Cast MAB2.9472×10-6-4460.00703.5123×10-5-3480.0838
LSM MAB3.2265×10-6-3180.00775.9900×10-5-2930.1430
Table 1  Electrochemical parameters of cast and LSM MAB in 3.5%NaCl solution under static and cavitation erosion conditions
Mass loss rate / mg·cm-2·h-1TECSCE
Cast MAB2.03901.45000.00700.58200.07680.5062
LSM MAB1.24000.63000.00770.60230.13530.4670
Table 2  Analysis of cavitation erosion-corrosion synergy for blank and LSM treated bronze
Fig.4  Contributions of different components to the cumulative cavitation-erosion mass loss of cast (a) and LSM MAB (b)
Fig.5  Surface morphologies of cast (a, c, e) and LSM MAB (b, d, f) after cavitation erosion in 3.5%NaCl solution for 1 h (a, b), 3 h (c, d) and 5 h (e, f)
1 Li K, Zhai X F, Guan F, et al. Progress on materials and protection technologies for marine propeller [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 495
李科, 翟晓凡, 管方等. 船用螺旋桨防护技术及其材料研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 495
2 Lin C, Yang Y, Zhao X B. Research methods and research progress for cavitation corrosion of passive metals [J]. Corros. Prot., 2018, 39: 369
林翠, 杨颖, 赵晓斌. 钝态金属的空蚀研究方法和研究进展 [J]. 腐蚀与防护, 2018, 39: 369
3 Tomlinson W J, Talks M G. Erosion and corrosion of cast iron under cavitation conditions [J]. Tribol. Int., 1991, 24: 67
4 Sakamoto A, Funaki H, Matsumura M. Influence of galvanic macro-cell corrosion on the cavitation erosion durability assessment of metallic materials—International cavitation erosion test of Gdańsk [J]. Wear, 1995, 186-187: 542
5 Zhu Y Y. Factors affecting the mechanical properties of marine propeller materials [J]. Spec. Cast. Nonferrous Alloys, 1989, (1): 31
朱友元. 影响船用螺旋桨材料机械性能的因素 [J]. 特种铸造及有色合金, 1989, (1): 31
6 He C L, Fu X Y, Chen H Z, et al. Corrosion resistance of laser-clad copper-based alloy on high manganese aluminum bronze surface [J]. J. Shenyang Univ. (Nat. Sci.), 2019, 31: 87
贺春林, 付馨莹, 陈宏志等. 高锰铝青铜表面激光熔覆铜基合金的耐蚀性能 [J]. 沈阳大学学报 (自然科学版), 2019, 31: 87
7 Wang Y, Wu J J, Zhang D. Research progress on corrosion of metal materials caused by dissimilatory iron-reducing bacteria in seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 389
王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 389
8 Chen X M, Wang H J, Zhou X L, et al. Laser surface modification technology and its research progress [J]. Mater. Rev., 2018, 32(S1): 341
陈小明, 王海金, 周夏凉等. 激光表面改性技术及其研究进展 [J]. 材料导报, 2018, 32(S1): 341
9 Fu A Q, Zhao M F, Li C Z, et al. Effect of laser surface melting on microstructure and performance of super 13Cr stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 446
付安庆, 赵密锋, 李成政等. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究 [J]. 中国腐蚀与防护学报, 2019, 39: 446
10 Wood R J K. Marine wear and tribocorrosion [J]. Wear, 2017, 376-377: 893
11 Wharton J A, Stokes K R. The influence of nickel-aluminium bronze microstructure and crevice solution on the initiation of crevice corrosion [J]. Electrochim. Acta, 2008, 53: 2463
12 Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media-a critical review [J]. Corros. Sci., 2004, 46: 109
13 Dong L F. Cavitation erosion behavior of ZQMn12-8-3-2 manganese aliuminium bronze in 2.4%NaCl solution [J]. Corros. Sci. Prot. Technol., 2011, 23: 485
(董立峰. ZQMn12-8-3-2高锰铝青铜在2.4%NaCl溶液中的空蚀行为 [J]. 腐蚀科学与防护技术, 2011, 23: 485
14 Ding G Q, Li X Y, Zhang B, et al. Variation of free corrosion potential of several metallic materials in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 543
丁国清, 李向阳, 张波等. 金属材料在天然海水中的腐蚀电位及其变化规律 [J]. 中国腐蚀与防护学报, 2019, 39: 543
15 Zheng Y G, Luo S Z, Ke W. Effect of passivity on electrochemical corrosion behavior of alloys during cavitation in aqueous solutions [J]. Wear, 2007, 262: 1308
16 Iqbal J, Hasan F, Ahmad F. Characterization of phases in an as-cast copper-manganese-aluminum alloy [J]. J. Mater. Sci. Technol., 2006, 22: 779
[1] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[2] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[3] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[4] TANG Rongmao, LIU Guangming, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu, LIU Yongqiang. Inhibition and Adsorption Behavior of Sodium Dodecyl-benzene Sulfonate on Q235 Steel in Simulated Concrete Pore Fluid[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[5] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[6] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[7] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[8] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[9] ZHANG Jie, QU Jiyu, LU Jinling, LIU Qian, LUO Xingqi. Sulfidation Corrosion Behavior of Nickel-based Alloys (Incoloy800, 825 and 625) in Sub/supercritical Water[J]. 中国腐蚀与防护学报, 2021, 41(6): 892-898.
[10] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[11] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[12] WANG Lizi, HUANG Miao, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Potassium Iodide on Corrosion of Steel in Citric Acid Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[13] HU Huihui, CHEN Changfeng. Mechanism of Temperature Influence on Adsorption of Schiff Base[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[14] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[15] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
No Suggested Reading articles found!