Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (2): 146-150    DOI: 10.11902/1005.4537.2019.226
Current Issue | Archive | Adv Search |
Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid
ZHANG Yao1, GUO Chen1, LIU Yanhui1, HAO Meijuan1, CHENG Shiming1, CHENG Weili1,2()
1 School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan University of Technology, Taiyuan 030024, China
Download:  HTML  PDF(1777KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical behavior of the extruded dilute Mg-2Sn-1Al-1Zn alloy was examined in simulated body fluid (SBF) by means of electrochemical workstation CS350. While stable open circuit potential, polarization curve and the impedance data after immersion for different time were measured. Results indicate that the stable open circuit potential value was -1.57 VSCE, the polarization corrosion rate was 8.98 mm/a and the corrosion resistance was 1011.21 Ω·cm2. Impedance tests at different time of immersion in simulated body fluids showed that the corrosion resistance first increased and then decreased. Due to the corrosion product layer on the surface of the soaked alloy is the densest after 2 h of immersion, the value of corrosion resistance reached a maximum of 2151.62 Ω·cm2.

Key words:  magnesium alloy      extrusion      simulated body fluid      electrochemical testing      corrosion      behavior     
Received:  28 April 2019     
ZTFLH:  TG174.46  
Fund: Shanxi Scholarship Council of China(2014-023);Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2014017);Natural Science Foundation of Shanxi(201801D121088)
Corresponding Authors:  CHENG Weili     E-mail:  chengweili7@126.com

Cite this article: 

ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 146-150.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.226     OR     https://www.jcscp.org/EN/Y2020/V40/I2/146

Fig.1  Open circuit potential (a) and potentiodynamic pola-rization curve (b) of the extruded alloy
SpecimenEcorrVIcorrmA·cm-2βamVβcmVVimm·a-1
TAZ211-1.523.89×10-244.74234.468.98
TAZ111[10]-1.535.42×10-2167.3228.6312.4
Table 1  Fitting data of the extruded alloy obtained from the polarization measurement
Fig.2  Nyquist diagram (a), Bode plots of phase angle versus frequency (b) and Bode plots of impedance versus frequency (c) for the extruded alloy
Fig.3  Equivalent circuit of the EIS spectra for the extruded alloy
SpecimenRs / Ω·cm2CPE / F·cm-2nRc / Ω·cm2RL / Ω·cm2L / H·cm-2Rp / Ω·cm2
TAZ21114.721.107×10-50.957838.81157.68321.51011.21
TAZ111[10]9.7416.818×10-60.995526.50187.70417.1723.94
Table 2  Electrochemical parameters of studied alloys attained from the fits of the experimental EIS data
Fig.4  Hydrogen evolution rate of the extruded TAZ alloys immersed in the SBF solution
Fig.5  Nyquist curves of the extruded alloy immersed in SBF solution for different time intervals
Immersion time / hRs / Ω·cm2C1 / F·cm-2Rc / Ω·cm2RL / Ω·cm2L1 / H·cm-2Rp / Ω·cm2
C1n
0.565.953.703×10-60.915811328.77331.41205.72
144.323.823×10-60.88711024025801548.32
2116.24.142×10-60.9241574.92460.50.2812151.62
340.504.627×10-60.9921408.36203712.71651.86
Table 3  Fitting parameters of the extruded alloy obtained from the EIS measurement for different time intervals
Fig.6  Surface SEM micrograph of extruded alloy immersed in the SBF solution for 2.5 h
[1] Zeng X Q, Wang Q D, Lv Y Z, et al. New progress in the application of magnesium alloys [J]. Foundry, 1998, (11): 39
(曾小勤, 王渠东, 吕宜振等. 镁合金应用新进展 [J]. 铸造, 1998, (11): 39)
[2] Long S Y, Xu S Y, Za J L, et al. Application of magnesium alloy is conducive to the vehicle "Energy Saying" [J]. Resour. Recycl., 2011, (3): 48
(龙思远, 徐绍勇, 查吉利等. 镁合金应用与汽车节能减排 [J]. 资源再生, 2011, (3): 48)
[3] Zhang Y F. Prospect analysis of magnesium alloy application field in China [J]. China New Technol. Prod., 2010, (9): 106
(张运法. 我国镁合金应用领域开发前景分析 [J]. 中国新技术新产品, 2010, (9): 106)
[4] Rad H R B, Idris M H, Kadir M R A, et al. Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys [J]. Mater. Des., 2012, 33(1): 88
[5] Zeng R, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials [J]. Adv. Eng. Mater., 2008, 10(8): B3
[6] Li G Q, Wu G H, Fan Y, et al. Current state and protection technique of magnesium alloys [J]. Mater. Rev., 2005, 19(11): 60
(李冠群, 吴国华, 樊昱等. 镁合金的腐蚀研究现状与防护途径 [J]. 材料导报, 2005, 19(11): 60)
[7] Cheng W L, Park S S, You B S, et al. Microstructure and mechanical properties of binary Mg-Sn alloys subjected to indirect extrusion [J]. Mater. Sci. Eng., 2010, A527: 4650
[8] Ha H Y, Kang J Y, Yang J, et al. Role of Sn in corrosion and passive behavior of extruded Mg-5wt%Sn alloy [J]. Corros. Sci., 2016, 102: 355
[9] Bakhsheshi-Rad H R, Abdul-Kadir M R, Idris M H, et al. Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg-0.5Ca-xZn alloys [J]. Corros. Sci., 2012, 64: 184
[10] Cheng W L, Zhang Y, Ma S C, et al. Tensile properties and corrosion behavior of extruded low-alloyed Mg-1Sn-1Al-1Zn alloy: The Influence of microstructural characteristics [J]. Materials, 2018, 11(7): 1157
[11] Metalnikov P, Ben-Hamu G, Eliezer D, et al. Role of Sn in microstructure and corrosion behavior of new wrought Mg-5Al alloy [J]. J. Alloy. Compd., 2019, 777: 835
[12] Liu C L, Wang Y J, Zeng R C, et al. In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin [J]. Corros. Sci., 2010, 52(10): 3341
[13] Cheng W L, Ma S C, Bai Y, et al. Corrosion behavior of Mg-6Bi-2Sn alloy in the simulated body fluid solution: The influence of microstructural characteristics [J]. J. Alloy. Compd., 2018, 731: 945
[14] Cheng W L, Huo R, Tian Q W, et al. Dependence of microstructure, texture and tensile properties on working conditions in indirect-extruded Mg-6Sn alloys [J]. Rare Met. Mater. Eng., 2015, 44(9): 2132
[15] Li J Z, Tian Y W. Study on passivation mechanism of magnesium alloys [A]. National Conference on Metallurgical Physics and Chemistry [C]. Ma'anshan, 2010
(李建中, 田彦文. 镁合金钝化机理的研究 [A]. 2010年全国冶金物理化学学术会议论文集 [C]. 马鞍山, 2010)
[16] Wang B J, Xu D K, Dong J H, et al. Effect of corrosion product films on the in vitro degradation behavior of Mg-3%Al-1%Zn (in wt%) alloy in Hank's solution [J]. J. Mater. Sci. Technol., 2018, 34(10): 1756
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!