Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (6): 605-612    DOI: 10.11902/1005.4537.2016.086
Current Issue | Archive | Adv Search |
Corrosion Characteristics of Carbon Steel in High Temperature Gas Containing Ammonium Bisulfate and Ammonium Sulfate
Shuangchen MA1, Kunling JIAO1, Linan ZHANG1, Yao SUN1, Wenlong WU2, Xiaoni ZHANG2
1 College of Environmental Science and Engineering, North China Electric Power University (Baoding), Baoding 071003, China
2 Electric Power Test Research Institute of Henan Province, Zhengzhou 450052, China
Download:  HTML  PDF(5427KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion of carbon steel in high temperature gas containing ammonium bisulfate (ABS) and ammonium sulfate (AS) was studied by means of weight loss method, SEM/EDS and XRD. Results show that in the range of 108~282 ℃, the ABS and AS in flue gas are both corrosive to carbon steel, while ABS causes more serious corrosion. As the concentration of ABS and AS in gas phase increases, the corrosion rate is accelerated; with the rising gas temperature, the corrosion rate is slowed down. The corrosion mechanism is speculated as follows: due to the acidity of ABS and AS solution, H+ acid corrosion is the main corrosion of carbon steel, but oxygen corrosion also takes place. The anode reaction generated Fe2+ may then induces the secondary reaction to form series of iron oxides, thereafter ammonium sulfate salt interacts with Fe2O3 and Fe3O4 to generate ammonium sulfate (NH4)Fe(SO4)2 and other double salts.

Key words:  SCR      ABS      AS      weight loss method      corrosion at high temperature     
Received:  27 June 2016     
ZTFLH:  X701  

Cite this article: 

Shuangchen MA, Kunling JIAO, Linan ZHANG, Yao SUN, Wenlong WU, Xiaoni ZHANG. Corrosion Characteristics of Carbon Steel in High Temperature Gas Containing Ammonium Bisulfate and Ammonium Sulfate. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 605-612.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.086     OR     https://www.jcscp.org/EN/Y2017/V37/I6/605

Fig.1  Diagram of experimental set-up
Fig.2  Variations of corrosion rates of 20# stainless steel in 300 mg/L ABS/AS solutions with temperature
Corrosivemedium Concentration
mgL-1
Corrosion time / h Superficial areacm2 Original mass / g Weight after corrosion / g Massloss / g Corrosion rate
gcm-2h-1
ABS 300 90 13.2142 8.6614 8.3272 0.3342 2.81×10-4
300 90 13.2236 8.6971 8.4115 0.2856 2.40×10-4
300 90 13.2162 8.4292 8.2147 0.2145 1.80×10-4
300 90 13.2166 8.5382 8.5196 0.0186 1.56×10-5
300 90 13.2214 8.5128 8.5013 0.0115 9.67×10-6
300 90 13.2178 8.5428 8.5323 0.0105 8.83×10-6
ABS 600 90 13.2242 8.6876 7.9813 0.7063 5.93×10-4
600 90 13.2163 8.5125 8.0998 0.4127 3.47×10-4
600 90 13.2188 8.5518 8.1250 0.4268 3.59×10-4
600 90 13.2145 8.5874 8.4199 0.1675 1.41×10-4
600 90 13.2234 8.5437 8.4185 0.1252 1.05×10-4
600 90 13.2196 8.575 8.5567 0.0138 1.54×10-5
AS 300 90 13.2232 8.4723 8.371 0.1013 8.52×10-5
300 90 13.2136 8.453 8.3545 0.0985 8.28×10-5
300 90 13.2182 8.5299 8.477 0.0529 4.45×10-5
300 90 13.2168 8.4222 8.4028 0.0194 1.63×10-5
300 90 13.2218 8.5419 8.5268 0.0151 1.27×10-5
300 90 13.2184 8.5449 8.5304 0.0145 1.22×10-5
Table 1  Corrosion rates of 20# stainless steel in ABS and AS solution at different temperatures
Fig.3  SEM images of 20# carbon steel after corrosion in 300 mg/L ABS at 108 ℃ (a), 154 ℃ (b), 208 ℃ (c) and 282 ℃ (d)
Fig.4  Corrosion rates of 20# stainless steel in 300 and 600 mg/L ABS at different temperatures
Fig.5  SEM images of 20# carbon steel after corrosion in 300 mg/L (a) and 600 mg/L (b) ABS at 208 ℃
Fig.6  Corrosion rates of 20# stainless steel in 300 mg/L ABS and AS at different temperatures
Fig.7  SEM images of 20# carbon steel after corrosion in 300 mg/L ABS (a, c) and 300 mg/L AS (b, d) at 154 ℃ (a, b) and 282 ℃ (c, d)
Fig.8  EDS analysis results of area I in Fig.3b which formed on 20# carbon steel after corrosion in 300 mg/L ABS at 154 ℃
Fig.9  EDS result of area II in Fig.3c which formed on 20# carbon steel after corrosion in 300 mg/L ABS at 208 ℃
Fig.10  XRD patterns of the corrosion products formed on 20# carbon steel after corrosion in ABS (300 mg/L) and AS (300 mg/L)
Fig.11  EDS analysis result of area III in Fig.7b which formed on 20# carbon steel after corrosion in 300 mg/L AS at 154 ℃
[1] Miller S F, Miller B G.Advanced flue gas cleaning systems for sulfur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants. In: Roddy D. Advanced Power Plant Materials, Design and Technology: A volume in Woodhead Publishing Series in Energy [M]. Amsterdam: Woodhead Publishing Limited, 2010: 187
[2] Dvo?ák R, Chlápek P, Jecha D, et al.New approach to common removal of dioxins and NOx as a contribution to environmental protection[J]. J. Cleaner Prod., 2010, 18: 881
[3] Izquierdo M T, Rubio B, De Yuso A M, et al. Enhancement of nitric oxide removal by ammonia on a low-rank coal based carbon by sulphuric acid treatment[J]. Fuel Proc. Technol., 2011, 92: 1362
[4] Burke J M, Johnson K L.Ammonium sulfate and bisulfate formation in air preheaters. Final report oct 80-oct 81[J]. BMJ Brit. Med. J., 1982, 329(7463): 446
[5] Wilburn R T, Wright T L.SCR ammonia slip distribution in coal plant effluents and dependence upon SO3[J]. Power Plant Chem., 2004, 6(5): 295
[6] Si F Q, Romero C E, Yao Z, et al.Inferential sensor for on-line monitoring of ammonium bisulfate formation temperature in coal-fired power plants[J]. Fuel Proc. Technol., 2009, 90: 56
[7] Huang Z G, Zhu Z P, Liu Z Y, et al.Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures[J]. J. Catal., 2003, 214: 213
[8] Ma S C, Deng Y, Wu W L, et al.Corrosion characteristics of downstream metal material of boiler system in solution of by-product ammonium bisulfate from SCR denitrification[J]. J. Chin. Soc. Corros.Prot., 2016, 36: 335(马双忱, 邓悦, 吴文龙等. SCR脱硝副产物硫酸氢铵对锅炉尾部金属材料的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2016, 36:335)
[9] Menasha J.Characterization of ammonium bisulfate formation in a bench-scale single-channel air preheater [D]. Irvine: University of California Irvine
[10] Ma H T.High temperature corrosion of metallic materials induced by chloride salts [D]. Dalian: Dalian University of Technology, 2003(马海涛. 高温氯盐环境中金属材料的腐蚀 [D]. 大连: 大连理工大学, 2003)
[11] Pang S J.Study on corrosion behavior resistance to sulfates/chloride salts of three kinds of alloy [D]. Dalian: Dalian University of Technology, 2014(庞胜娇. 三种合金耐硫酸盐/氯盐腐蚀行为研究 [D]. 大连: 大连理工大学, 2014)
[12] Wan Y, Yan C W, Cao C N.Atmospheric corrosion of a3 steel deposited with different salts[J]. Acta Phys.-Chim. Sin., 2004, 20: 659(万晔, 严川伟, 曹楚南. 可溶盐沉积对碳钢大气腐蚀的影响[J]. 物理化学学报, 2004, 20: 659)
[13] Tan Y, Liang K X, Zhang S H.Photo-electrochemical study on semiconductor properties of oxide films formed on 316L stainless steel in high temperature water[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 492(檀玉, 梁可心, 张胜寒. 光电化学法研究316L不锈钢在高温水中生成氧化膜的半导体性质[J]. 中国腐蚀与防护学报, 2013, 33: 492
[14] Xu B W, Zhao W Y, Ma Y, et al.Corrosion mechanism of γ-TiAl alloy at high temperature in molten salt environment[J]. Chin. J. Nonferrous Met., 2010, 20: 2130(徐博文, 赵文月, 马岳等. γ-TiAl合金在高温熔盐环境下的腐蚀机理[J]. 中国有色金属学报, 2010, 20: 2130)
[15] Li G M, Liu L W, Zheng J S.Corrosion behavior of carbon steel in high pressure carbon dioxide saturated NaCl solutions containing hydrogen sulfide[J]. J. Chin. Soc. Corros. Prot., 2000, 20: 204(李国敏, 刘烈伟, 郑家燊. 碳钢在含硫化氢及高压二氧化碳饱和的NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2000, 20: 204)
[16] Ma S C, Deng Y, Wu W L, et al.Experimental research on ABS formation characteristics in SCR denitrification process[J]. J. Chin. Soc. Power Eng., 2016, 36: 143(马双忱, 邓悦, 吴文龙等. SCR脱硝过程中硫酸氢铵形成特性实验研究[J]. 动力工程学报, 2016, 36: 143)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[4] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[5] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[6] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[7] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[8] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[9] ZHAO Boru, SUN Zhi, ZHAO Jianwei, CHEN Zhidong. Self-assembly Process of Hexadecanethiol on Silver Plating Surface and Its Protectiveness[J]. 中国腐蚀与防护学报, 2020, 40(3): 281-288.
[10] JIANG Xuguang, LIU Xiaobo. Research Progress and Direction Thinking on Corrosion of Key Heat Transfer Components in Waste Incineration Boilers[J]. 中国腐蚀与防护学报, 2020, 40(3): 205-214.
[11] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[12] LI Xianghong, DENG Shuduan, XU Xin. Inhibition Action of Cassava Starch Ternary Graft Copolymer on Steel in H2SO4 Solution[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[13] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[14] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[15] BAI Pengkai, XU Ping. Synthesis and Modification of Green Environment-friendly Scale Inhibitors in the Field of Water Treatment: the State-of-art Technological Advances[J]. 中国腐蚀与防护学报, 2020, 40(2): 87-95.
No Suggested Reading articles found!