Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (3): 281-288    DOI: 10.11902/1005.4537.2019.023
Current Issue | Archive | Adv Search |
Self-assembly Process of Hexadecanethiol on Silver Plating Surface and Its Protectiveness
ZHAO Boru1, SUN Zhi1, ZHAO Jianwei2(), CHEN Zhidong1()
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213100, China
2 College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
Download:  HTML  PDF(4193KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The self-assembly process of hexadecanethiol on the surface of Ag-plating on Cu-plate has been studied by means of charge and discharge capacitance method, contact angle measurement, and electrochemical impedance spectroscopy. The theoretical fitting to the capacitance data acquired from tests in 10 and 100 μmol·L-1 solution gives the adsorption rate constants of (1.3±0.2)×106 and (2.8±0.5)×104 mol-1·L·s-1 respectively, which are closed to those of (9.3±0.7)×105 and (3.4±0.6)×104 mol-1·L·s-1 obtained by using contact angle measurements. The results indicate that the adsorption rate constant of hexadecanethiol in the dilute solution is higher than that in the concentrated one. Tafel polarization curves reveal that both anodic and cathodic currents are significantly reduced while the silver plating was immersed in 5 mmol·L-1 hexadecanethiol solution for 15 min, correspondingly the corrosion inhibition rate reaches 98.6%. Furthermore, when the Ag-plating was firstly covered with a self-assembled film through immersion in 5 mmol·L-1 hexadecanethiol solution and then subjected to post heat treatment at 80 ℃ for 12 h, as expected, the treated Ag-plating exhibits excellent corrosion resistance to Na2S solution and H2S containing atmosphere. Therefore, the application of hexadecanethiol solution is effective and feasible in practice.

Key words:  hexadecanethiol      self-assembly      silver plating      corrosion     
Received:  13 February 2019     
ZTFLH:  TG172.3  
Fund: Natural Science Foundation of Zhejiang Province(LY19B030006);Natural Science Foundation of Zhejiang Province(LY19E090005)
Corresponding Authors:  ZHAO Jianwei,CHEN Zhidong     E-mail:  jwzhao@mail.zjxu.edu.cn;zdchen@cczu.edu.cn

Cite this article: 

ZHAO Boru, SUN Zhi, ZHAO Jianwei, CHEN Zhidong. Self-assembly Process of Hexadecanethiol on Silver Plating Surface and Its Protectiveness. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 281-288.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.023     OR     https://www.jcscp.org/EN/Y2020/V40/I3/281

Fig.1  Cyclic voltammetry curves of silver plating layer soaked in 100 μmol·L-1 C16H33SH solution for different time in 0.15 mol·L-1 KNO3 solution (a), and time-dependences of surface coverage of silver soaked in the C16H33SH solution of different concentration (b)
Fig.2  Measured (a) and calculated (b) values of the contact angle of silver sample socked in the solutions with different concentrations of C16H33SH as a function of socking time
Fig.3  Nyquist plots determined in 0.15 mol·L-1 KNO3 solution for short time (a) and long time (b) for the silver plating layer soaked in 100 μmol·L-1 C16H33SH solution for different time
Fig.4  Tafel polarization curves obtained in 3.5%NaCl solution for silver sample soaked in the solutions with different concentrations of C16H33SH for 15 min
Concentration mmol·L-1EcorrVbcmV·dec-1bamV·dec-1IcorrμA·cm-2η%
0-0.22214.9122.66.863---
1-0.17634.7139.31.49178.3
3-0.16956.9133.30.16397.6
5-0.15662.4134.20.09898.6
Table 1  Corrosion parameters obtained from Tafel curves
Fig.5  Macro-appearances of silver samples without (a) and with soaking in 1 mmol·L-1 (b), 3 mmol·L-1 (c) and 5 mmol·L-1 (d) C16H33SH solutions and then high temperature treatment
Fig.6  Macro-appearances of silver samples without (a) and with soaking in 1 mmol·L-1 (b), 3 mmol·L-1 (c, e) and 5 mmol·L-1 (d, f) C16H33SH solutions for 15 min and then corrosion in 0.1 mol·L-1 Na2S solution for 0.5 h (a~d) and 1 h (e, f)
Fig.7  Macro-appearances of silver samples without (a) and with soaking in 1 mmol·L-1 (b), 3 mmol·L-1 (c) and 5 mmol·L-1 (d) C16H33SH solutions and then H2S corrosion
[1] Schreiber F. Structure and growth of self-assembling monolayers [J]. Prog. Surf. Sci., 2000, 65: 151
[2] Yang C J, Liang C H, Zhang X. Research progress of anti-tarnishing techniques of silver [J]. Electroplat. Finish., 2009, 28(6): 71
(杨长江, 梁成浩, 张旭. 银抗变色工艺研究进展 [J]. 电镀与涂饰, 2009, 28(6): 71)
[3] Walsh D E, Milad G, Gudeczauskas D. Final finish: Printed circuit boards [J]. Met. Finish., 2003, 101: 25
[4] Luo Y Z. Gold and silver electroplating for local decoration of table ware [J]. Electroplat. Finish., 2001, 20(5): 45
(罗耀宗. 餐具的装饰性局部镀金、银 [J]. 电镀与涂饰, 2001, 20 (5): 45)
[5] Ulman A. Formation and structure of self-assembled monolayers [J]. Chem. Rev., 1996, 96: 1533
[6] Zhao J W, Yu H Z, Wang Y Q, et al. The adsorption kinetics and characterization of azobenzene self-assembled monolayers on gold [J]. Acta Phys.-Chim. Sin., 1996, 12: 581
(赵健伟, 于化忠, 王永强等. 偶氮苯衍生物自组装膜的表征及组装动力学 [J]. 物理化学学报, 1996, 12: 581)
doi: 10.3866/PKU.WHXB19960702
[7] Wang J, Li D G, Yu X J, et al. SAMS of dodecyl mercaptan and ITS corrosion protection on iron surface [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 207
(王静, 李德刚, 于先进等. 十二烷基硫醇在Fe表面自组装成膜及对其的腐蚀保护 [J]. 中国腐蚀与防护学报, 2010, 30: 207)
[8] Li D G, Yu X J, Dong Y H. The different self-assembled way of n- and t-dodecyl mercaptan on the surface of copper [J]. Appl. Surf. Sci., 2007, 253: 4182
doi: 10.1016/j.apsusc.2006.09.021
[9] Evesque M, Keddam M, Takenouti H. The formation of self-assembling membrane of hexadecane-thiol on silver to prevent the tarnishing [J]. Electrochim. Acta, 2004, 49: 2937
doi: 10.1016/j.electacta.2004.01.052
[10] Lu W H, Chen D Y, Chen B R, et al. Hexadecane-thiol self-assembly monolayers on silver for anti-tarnishing [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 172
(鲁文晔, 陈蝶依, 陈步荣等. 十六硫醇自组装膜对Ag的防变色作用研究 [J]. 中国腐蚀与防护学报, 2016, 36: 172)
doi: 10.11902/1005.4537.2015.057
[11] Liang C H, Yang C J, Huang N B. Tarnish protection of silver by octadecanethiol self-assembled monolayers prepared in aqueous micellar solution [J]. Surf. Coat. Technol., 2009, 203: 1034
doi: 10.1016/j.surfcoat.2008.09.034
[12] Xu X D, Jie G X, Zhu J H, et al. GB/T 2423.20-2014 Environmental testing-Part 2: Test methods-Test Kd: Hydrogen sulphide test for contacts and connections [S]. Beijing: China Standard Press, 2015
许雪冬, 揭敢新, 朱建华等. GB/T 2423.20-2014 环境试验 第2部分: 试验方法试验Kd: 接触点和连接件的硫化氢试验 [S]. 北京: 中国标准出版社, 2015)
[13] Wan L, Du W, Li J J, et al. Inhibition effects of odtadecanethiol self-assembled monolayers for bronze-silver galvanic corrosion [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 245
(万俐, 杜伟, 李佳佳等. 十八硫醇自组装膜对青铜-银电偶腐蚀的抑制作用 [J]. 中国腐蚀与防护学报, 2013, 33: 245)
[14] Ulman A. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly [M]. San Diego: San Diego Press, 1991
[15] Chen L, Tian L, Liu L, et al. Preparation and assay performance of supramolecule of cyclophane-complexed polyoxometalates supported on the gold surface [J]. Sensor. Actuat. B: Chem., 2005, 110: 271
doi: 10.1016/j.snb.2005.02.005
[16] McCafferty E. Validation of corrosion rates measured by the Tafel extrapolation method [J]. Corros. Sci., 2005, 47: 3202
doi: 10.1016/j.corsci.2005.05.046
[17] Mansfeld F. Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves [J]. Corros. Sci., 2005, 47: 3178
doi: 10.1016/j.corsci.2005.04.012
[18] Cao H, Gong W, Wang J W, et al. Electrochemical corrosion of steel bar with Dacromet coating at Golmud [J]. Concrete, 2018, (4): 57
(曹辉, 巩位, 王晋伟等. 格尔木地区达克罗涂层钢筋的电化学腐蚀研究 [J]. 混凝土, 2018, (4): 57)
[19] Sinclair J D. Tarnishing of silver by organic sulfur vapors: Rates and film characteristics [J]. J. Electrochem. Soc., 1982, 129: 33
doi: 10.1149/1.2123787
[20] Zhang L L, Wang Z Y, Han W. Tarnishing behavior of silver in sodium sulfide solution [J]. Equip. Environ. Eng., 2008, 5(5): 33
(张丽丽, 王振尧, 韩薇. 银在硫化钠溶液中的变色行为 [J]. 装备环境工程, 2008, 5(5): 33)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!