Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (3): 205-214    DOI: 10.11902/1005.4537.2019.073
Current Issue | Archive | Adv Search |
Research Progress and Direction Thinking on Corrosion of Key Heat Transfer Components in Waste Incineration Boilers
JIANG Xuguang(), LIU Xiaobo
State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
Download:  HTML  PDF(1058KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The research progress on the corrosion of key heat transfer components of boilers in domestic waste incineration power plants was reviewed. The corrosion characteristics and mechanism of three common corrosion types including chlorine corrosion, sulfur corrosion and alkali metal salt corrosion have been discussed respectively. Factors affecting corrosion were analyzed,such as metal materials, temperature, corrosive medium content, water vapor and heavy metal elements. The main achievements and shortcomings of the current research were summarized, and on this basis, further research directions were also proposed.

Key words:  waste incineration      chlorine      sulfur      alkali metal      coupled corrosion     
Received:  05 June 2019     
ZTFLH:  TK224.9  
Fund: National Key R&D Program of China(2018YFF0215001);National Key R&D Program of China(2018YFC1901302);National Key R&D Program of China(2017YFC0703100);Innovative Research Groups of National Natural Science Foundation of China(51621005);National Natural Science Foundation of China(51676172);Fundamental Research Funds for Zhejiang University(2018FZA4010);Fundamental Research Funds for Zhejiang University(2016FZA4010)
Corresponding Authors:  JIANG Xuguang     E-mail:  jiangxg@zju.edu.cn

Cite this article: 

JIANG Xuguang, LIU Xiaobo. Research Progress and Direction Thinking on Corrosion of Key Heat Transfer Components in Waste Incineration Boilers. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 205-214.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.073     OR     https://www.jcscp.org/EN/Y2020/V40/I3/205

Fig.1  Relationship between wall temperature and corrosion rate of heating surface of incinerator[39]
Fig.2  Thermogravimetric results for the corrosion of iron at 400~700 ℃ in He±5% O2±815 mg/m3 HCl[5]
[1] National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook-2017 [M]. Beijing: China Statistics Press, 2017
(中华人民共和国国家统计局. 中国统计年鉴2017 [M]. 北京: 中国统计出版社, 2017)
[2] Fu L Q. Causes of corrosion and preventive measures of the heating surface of boilers in domestic waste incineration plant [J]. Metall. Collect., 2017, (5): 9
(傅玲琼. 生活垃圾焚烧厂锅炉受热面腐蚀原因及预防措施 [J]. 工程技术研究, 2017, (5): 9)
[3] Wu F. Characteristics of chlorine corrosion at high temperature [J]. Power Syst. Eng., 2003, 19(1): 13
(吴峰. 高温氯腐蚀的特点 [J]. 电站系统工程, 2003, 19(1): 13)
[4] Grabke E J, Reese E, Spiegel M. The effects of chlorides, Hydrogen chloride, and Sulfur dioxide in the oxidation of steels below deposits [J]. Corros. Sci., 1995, 37: 1023
doi: 10.1016/0010-938X(95)00011-8
[5] Zahs A, Spiegel M, Grabke H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400-700 ℃ [J]. Corros. Sci., 2000, 42: 1093
[6] Ma H T. High temperature corrosion of metallic materials induced by chloride salts [D]. Dalian: Dalian University of Technology, 2003
马海涛. 高温氯盐环境中金属材料的腐蚀 [D]. 大连: 大连理工大学, 2003)
[7] Li Y S, Niu Y, Spiegel M. High temperature interaction of Al/Si-modified Fe-Cr alloys with KCl [J]. Corros. Sci., 2007, 49: 1799
[8] Kawahara Y. Controlling factors of localized corrosion in boiler combustion gas environments [J]. Oxid. Met., 2016, 85: 127
[9] Xu H L, Yang J Y. Cause analysis and countermeasures for corrosion of superheater in waste incineration boiler [J]. Energy Environ., 2018, (1): 30
(徐火力, 杨家燚. 垃圾焚烧锅炉过热器腐蚀原因分析及对策 [J]. 能源与环境, 2018, (1): 30)
[10] Li Y S, Niu Y, Liu G, et al. High temperature corrosion of metallic materials in waste incineration environment [J]. Corros. Sci. Prot. Technol., 2000, 12: 224
(李远士, 牛焱, 刘刚等. 金属材料在垃圾焚烧环境中的高温腐蚀 [J]. 腐蚀科学与防护技术, 2000, 12: 224)
[11] Zhang N. Experimental study on high temperature corrosion of heat exchangers in waste to energy plant [D]. Tianjin: Tianjin University, 2016
张楠. 垃圾焚烧炉换热器高温腐蚀实验研究 [D]. 天津: 天津大学, 2016)
[12] Ruh A, Spiegel M. Thermodynamic and kinetic consideration on the corrosion of Fe, Ni and Cr beneath a molten KCl-ZnCl2 mixture [J]. Corros. Sci., 2006, 48: 6795
[13] Ishitsuka T, Nose K. Stability of protective oxide films in waste incineration environment-Solubility measurement of oxides in molten chlorides [J]. Corros. Sci., 2002, 44: 247
[14] Zhu J Z, Chen L Q, Gan K. Corrosion mechanism of alkali chloride during the incineration of refuse [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2005, 33(3): 78
(祝建中, 陈烈强, 甘轲. 垃圾焚烧气氛中碱金属氯化物的腐蚀机理 [J]. 华南理工大学学报: 自然科学版, 2005, 33(3): 78)
[15] Hou P Y, Prüßner K, Fairbrother D H, et al. Sulfur segregation to deposited Al2O3 film/alloy interface at 1000 ℃ [J]. Scr. Mater., 1998, 40: 241
[16] Gong B X. Influence on superheater high-temperature corrosion by flue gas components in incinerators and preventive measures [J]. Thermal Power Generat., 1995, (6): 54
(龚佰勋. 垃圾焚烧炉烟气成分对过热器高温腐蚀的影响及其防止方法初探 [J]. 热力发电, 1995, (6): 54)
[17] Ma X Q. High temperature corrosion and countermeasure of S, Cl and its chemical compound on refuse incineration boiler [J]. Power Syst. Eng., 1997, 13(5): 39
(马晓茜. 硫和氯及其化合物对垃圾焚烧炉的高温腐蚀与对策 [J]. 电站系统工程, 1997, 13(5): 39)
[18] Pan T J, Zeng C L, Niu Y. Corrosion of three commercial steels under ZnCl2-KCl deposits in a reducing atmosphere containing HCl and H2S at 400-500 ℃ [J]. Oxid. Met., 2007, 67: 107
doi: 10.1007/s11085-006-9047-5
[19] Fu G Y, Lin L H, Liu Q, et al. Hot corrosion behavior of Fe-Cr alloys with Na2SO4 coating [J]. J. Shenyang Univ. Chem. Technol., 2014, 28: 69
(付广艳, 林立海, 刘群等. Fe-Cr合金在Na2SO4盐膜下的热腐蚀行为 [J]. 沈阳化工大学学报, 2014, 28: 69)
[20] Paneru M, Stein-Brzozowska G, Maier J, et al. Corrosion mechanism of alloy 310 austenitic steel beneath NaCl deposit under varying SO2 concentrations in an Oxy-fuel combustion atmosphere [J]. Energy Fuels, 2013, 27: 5699
[21] Henderson P J, Szakálos P, Pettersson R, et al. Reducing superheater corrosion in wood-fired boilers [J]. Mater. Corros., 2006, 57: 128
[22] Karlsson S, Jonsson T, Hall J, et al. Mitigation of fireside corrosion of stainless steel in power plants: A laboratory study of the influences of SO2 and KCl on initial stages of corrosion [J]. Energy Fuels, 2014, 28: 3102
[23] Aho M, Pasi V, Taipale R, et al. Effective new chemicals to prevent corrosion due to Chlorine in power plant superheaters [J]. Fuel, 2008, 87: 647
doi: 10.1016/j.fuel.2007.05.033
[24] Håkan K, Linda B, Åmand L E. The importance of SO2 and SO3 for sulphation of gaseous KCl-An experimental investigation in a biomass fired CFB boiler [J]. Combust. Flame, 2010, 157: 1649
doi: 10.1016/j.combustflame.2010.05.012
[25] Viklund P, Pettersson R, Hjörnhede A, et al. Effect of sulphur containing additive on initial corrosion of superheater tubes in waste fired boiler [J]. Corros. Eng. Sci. Technol., 2009, 44: 234
doi: 10.1179/174327809X419203
[26] Kassman H, Normann F, Åmand L E. The effect of oxygen and volatile combustibles on the sulphation of gaseous KCl [J]. Combust. Flame, 2013, 160: 2231
[27] Jonsson T, Folkeson N, Svensson J E, et al. An ESEM in situ investigation of initial stages of the KCl induced high temperature corrosion of a Fe-2.25Cr-1Mo steel at 400 ℃ [J]. Corros. Sci., 2011, 53: 2233
[28] Folkeson N, Jonsson T, Halvarsson M, et al. The influence of small amounts of KCl (s) on the high temperature corrosion of a Fe-2.25Cr-1Mo steel at 400 and 500 ℃ [J]. Mater. Corros., 2011, 62: 606
[29] Pettersson J, Folkeson N, Johansson L G, et al. The effects of KCl, K2SO4 and K2CO3 on the high temperature corrosion of a 304-Type austenitic stainless steel [J]. Oxid. Met., 2011, 76: 93
doi: 10.1007/s11085-011-9240-z
[30] Lehmusto J, Skrifvars B J, Yrjas P, et al. Comparison of Potassium chloride and Potassium carbonate with respect to their tendency to cause high temperature corrosion of stainless 304L steel [J]. Fuel Process. Technol., 2013, 105: 98
doi: 10.1016/j.fuproc.2011.12.016
[31] Enestam S, Bankiewicz D, Tuiremo J, et al. Are NaCl and KCl equally corrosive on superheater materials of steam boilers? [J]. Fuel, 2013, 104: 294
doi: 10.1016/j.fuel.2012.07.020
[32] Zhang W, He J J. Thermal corrosion behavior in mixed molten salt of different alkali metals of 12Cr1MoVG steel for heat pipe in waste incinerator [J]. Mater. Mech. Eng., 2019, 43(2): 13
(张炜, 何建军. 垃圾焚烧炉热管用12Cr1MoVG钢在不同碱金属混合熔盐中的热腐蚀行为 [J]. 机械工程材料, 2019, 43(2): 13)
[33] Yang B, Zhong Z J, Huang Q X, et al. Research development of high temperature Chlorine corrosion in waste incineration boilers [J]. Guangdong Electr. Power, 2016, 29(6): 5
(杨波, 钟志强, 黄巧贤等. 垃圾焚烧锅炉的高温氯腐蚀研究进展 [J]. 广东电力, 2016, 29(6): 5)
[34] Indacochea J E, Smith J L, Litko K R, et al. High-temperature oxidation and corrosion of structural materials in molten chlorides [J]. Oxid. Met., 2001, 55: 1
doi: 10.1023/A:1010333407304
[35] Pan T J, Li J. Investigation on accelerated corrosion of Fe-Si alloys induced by chloride salt film [J]. Corros. Sci. Prot. Technol., 2014. 26(5): 401
(潘太军, 李杰. 氯化物盐膜下Fe-Si合金加速腐蚀行为的研究 [J]. 腐蚀科学与防护技术, 2014, 26(5): 401)
doi: 10.11903/1002.6495.2013.301
[36] Li Y S, Spiegel M, Shimada S. Corrosion behaviour of various model alloys with NaCl-KCl coating [J]. Mater. Chem. Phys., 2005, 93: 217
[37] Zahrani E M, Alfantazi A M. High temperature corrosion and electrochemical behavior of INCONEL 625 weld overlay in PbSO4-Pb3O4-PbCl2-CdO-ZnO molten salt medium [J]. Corros. Sci., 2014, 85: 60
doi: 10.1016/j.corsci.2014.03.034
[38] Sun H, Wang J Q, Li Z J, et al. Corrosion behavior of 316SS and Ni-based alloys in a ternary NaCl-KCl-MgCl2 molten salt [J]. Solar Energy, 2018, 171: 320
doi: 10.1016/j.solener.2018.06.094
[39] Bai X X, Zhang Y G. Research on treatment of Water-wall high temperature corrosion of waste heat boiler in municipal solid waste incinerator [J]. Environ. Sanitat. Eng., 2018, 26(3): 68
(白贤祥, 张玉刚. 生活垃圾焚烧厂余热锅炉水冷壁高温腐蚀治理研究 [J]. 环境卫生工程, 2018, 26(3): 68)
[40] Pan C Y, Jiang X G, Shang N, et al. Research development of high temperature corrosion of HCl in flue gas from MSW incineration [J]. Boiler Technol., 2003, 34(5): 72
(潘葱英, 蒋旭光, 尚娜等. 垃圾焚烧烟气中HCl的高温腐蚀研究进展 [J]. 锅炉技术, 2003, 34(5): 72)
[41] Kinnunen H, Hedman M, Engblom M, et al. The influence of flue gas temperature on lead chloride induced high temperature corrosion [J]. Fuel, 2017, 196: 241
doi: 10.1016/j.fuel.2017.01.082
[42] Skrifvars B J, Backman R, Hupa M, et al. Corrosion of superheater steel materials under alkali salt deposits Part 1: The effect of salt deposit composition and temperature [J]. Corros. Sci., 2008, 50: 1274
doi: 10.1016/j.corsci.2008.01.010
[43] Skrifvars B J, Westen-karlsson M, Hupa M, et al. Corrosion of super-heater steel materials under alkali salt deposits. Part 2: SEM analyses of different steel materials [J]. Corros. Sci., 2010, 52: 1011
doi: 10.1016/j.corsci.2009.11.026
[44] Hou P Y, Zhang H, Stringer J. Strong HCl effect on tube wastage in a simulated bubbling fluidized bed environment [J]. Wear, 2000, 237: 137
doi: 10.1016/S0043-1648(99)00305-1
[45] Schaal E, David N, Panteix P J, et al. Effect of chloride content in ash in oxidation kinetics of Ni-Based and Fe-based alloys [J]. Oxid. Met., 2015, 84: 307
doi: 10.1007/s11085-015-9556-1
[46] Pastén M S, Spiegel M. High temperature corrosion of metallic materials in simulated waste incineration environments at 300-600 ℃ [J]. Mater. Corros., 2006, 57: 192
doi: 10.1002/(ISSN)1521-4176
[47] Lu W M, Pan T J, Zhang K, et al. Accelerated corrosion of five commercial steels under a ZnCl2-KCl deposit in a reducing environment typical of waste gasification at 673-773 K [J]. Corros. Sci., 2008, 50: 1900
doi: 10.1016/j.corsci.2008.03.004
[48] Bankiewicz D, Yrjas P, Lindberg D, et al. Determination of the corrosivity of Pb-containing salt mixtures [J]. Corros. Sci., 2013, 66: 225
doi: 10.1016/j.corsci.2012.09.024
[49] Galetz M C, Bauer J T, Schuze M, et al. The influence of Copper in ash deposits on the corrosion of boiler tube alloys for waste-to-energy plants [J]. Mater. Corros., 2014, 65: 778
[50] Xu M L, Yan J H, Ma Z Y, et al. Mechanism analysis of ash deposits corrosion in waste incinerator [J]. Proc. CSEE, 2007, 27(23): 32
(许明磊, 严建华, 马增益等. 垃圾焚烧炉受热面的积灰腐蚀机理分析 [J]. 中国电机工程学报, 2007, 27(23): 32)
[51] Ijiri M, Okada N, Kanetou S, et al. Thermal stress relaxation and high-temperature corrosion of Cr-Mo steel processed using multifunction cavitation [J]. Materials (Basel), 2018, 11: E2291
[52] Masaki U, Kamei Y, Fujii K. Effect of static stress on high temperature corrosion behavior of boiler tubes in waste incineration environment [J]. J. Jpn. Inst. Met., 2002, 66: 576
doi: 10.2320/jinstmet1952.66.6_576
(Masaki U, Kamei Y, Fujii K. 廃棄物焼却ボイラの高温腐食に及ぼす応力の影響 [J]. 日本金属学会志, 2002, 66: 576)
[1] LI Xianghong, DENG Shuduan, XU Xin. Inhibition Action of Cassava Starch Ternary Graft Copolymer on Steel in H2SO4 Solution[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[2] Zhifeng LIU,Zhiping ZHU,Chun SHI,Zhaoxin HUANG. Preparation of Sulfuric Acid Vapor for Simulation of Sulfuric Acid Dew Point Corrosion by Inert Gas Carrying Method[J]. 中国腐蚀与防护学报, 2020, 40(1): 1-9.
[3] YU Renqiang,HE Jianjun,LI Wei,REN Yanjie,YANG Wang. Erosive Wear of Cr30A High Chromium Cast Iron in a Simulated Circulating Pump Operation Condition with Slurry Related to Wet DesulfurationProcess in Thermal Power Plant[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[4] Changgang WANG,Jie WEI,Xin WEI,Xin MU,Fang XUE,Junhua DONG,Wei KE,Guoping LI. Crevice Corrosion Behavior of Several Super Stainless Steels in a Simulated Corrosive Environment of Flue Gas Desulfurization Process[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
[5] Gaohong CHEN,Yuansen HU,Mei YU,Jianhua LIU,Guoai LI. Effect of Sulfuric Acid Anodizing on Mechanical Properties of 2E12 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[6] Taotao XU, Zhuqiao CHEN, Weiping TIAN, Cheng WANG, Shenglong ZHU, Fuhui WANG, Tao ZHANG, Minghui CHEN. Protective Performance of a Novel Silicone Coating ES150 Modified with Nano-particulate of Metal for AZ91D Mg-alloy[J]. 中国腐蚀与防护学报, 2018, 38(4): 373-380.
[7] Yan LI,Jintao LU,Zhen YANG,Ming ZHU,Yuefeng GU. Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[8] Qiuyan SHEN,Hongfang LIU,Liewei LIU. Influence of Sulfur Deposition on Corrosion Behavior of Carbon Steel L360 Covered with FeS- or FeCO3-film[J]. 中国腐蚀与防护学报, 2016, 36(1): 79-86.
[9] HUANG Bensheng,YIN Wenfeng,WANG Xiaohong,SHI Yijun. Corrosion Behavior of Steels Used in Making Crude Oil Distillation Unit in High Temperature Crude Oil Fractions[J]. 中国腐蚀与防护学报, 2013, 33(5): 377-382.
[10] ZENG Hongtao,XIANG Song,LIU Songlin,HE Yonggang. Corrosion Behaviors of 904L Austenite Stainless Steel in Concentrated Sulfuric Acid Containing Hydrofluoric Acid[J]. 中国腐蚀与防护学报, 2013, 33(3): 182-187.
[11] HU Chunlian, HOU Shanglin. FAILURE ANALYSIS OF PLUNGERS SPRAYED BY  Ni-BASE ALLOY ON HYDRAULIC FEEDBACK SUBSURFACE PUMP[J]. 中国腐蚀与防护学报, 2012, 32(1): 80-84.
[12] PAN Taijun, CHEN Degui, ZHANG Ke, HU Jing. HIGH TEMPERATURE CORROSION OF NF616 AND 12CrMoV IN SIMULATED WASTE-GASIFICATION ENVIROMENTS[J]. 中国腐蚀与防护学报, 2011, 31(6): 457-461.
[13] GONG Min, ZHANG Yu, ZHENG Xingwen, FENG Min, ZHANG Guohu, YANG Lin. STUDY OF THE SULFUR-CONTAINING AMINO'S STRUCTURE AND CORROSION INHIBITION MECHANISM IN H2SO4[J]. 中国腐蚀与防护学报, 2011, 31(5): 341-347.
[14] DONG Zehua, HE Jinbei, GUO Xingpeng,ZHANG Yaoxiang, HAN Jicheng. HIGH TEMPERATURE INTERACTIVE CORROSION OF NAPHTHENIC ACID AND ORGANIC SULPHIDE ON Cr5Mo STEEL IN SYNTHETIC REFINING MIXTURE[J]. 中国腐蚀与防护学报, 2011, 31(3): 219-224.
[15] YU Yuanfang, WANG Hui, HU Shilin. SOME CORROSION PROBLEMS OF ALLOY 690TT IN SPECIAL ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2010, 30(3): 251-256.
No Suggested Reading articles found!