Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (2): 105-114    DOI: 10.11902/1005.4537.2019.035
Current Issue | Archive | Adv Search |
Inhibition Action of Cassava Starch Ternary Graft Copolymer on Steel in H2SO4 Solution
LI Xianghong1(), DENG Shuduan2, XU Xin1
1 College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
2 Faculty of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China
Download:  HTML  PDF(3700KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cassava starch ternary graft copolymer (CS-SAS-AAGC) was prepared by grafting two monomers of sodium allylsulfonate (SAS) and acryl amide (AA) simultaneously on the plain cassava starch (CS). The inhibition effect of CS-SAS-AAGC on the corrosion of cold rolled steel (CRS) in H2SO4 was studied by mass loss method, electrochemical technique, scanning electron microscope (SEM) and contact angle measurement. The results show that inhibition performance of CS-SAS-AAGC is better than the single CS, AA or SAS, and the maximum inhibition efficiency is higher than 90%. The adsorption of CS-SAS-AAGC on CRS surface obeys Langmuir isotherm. Inhibitive action gradually decreases with the increase of temperature and acid concentration, while almost remains stable along with the increase of immersion time. CS-SAS-AAGC acts as a mixed-type inhibitor while mainly retards the cathodic reaction. With the addition of CS-SAS-AAGC, the charge transfer resistance of CRS electrode surface is drastically increased, the CRS surface becomes hydrophobic, as a result, its corrosion is efficiently mitigated.

Key words:  cassava starch ternary graft copolymer      inhibition      cold rolled steel      sulfuric acid      adsorption     
Received:  14 March 2019     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51561027);Training Programs of Young and Middle Aged Academic and Technological Leaders in Yunnan Province(2015HB049);Training Programs of Young and Middle Aged Academic and Technological Leaders in Yunnan Province(2017HB030)
Corresponding Authors:  LI Xianghong     E-mail:  xianghong-li@163.com

Cite this article: 

LI Xianghong, DENG Shuduan, XU Xin. Inhibition Action of Cassava Starch Ternary Graft Copolymer on Steel in H2SO4 Solution. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 105-114.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.035     OR     https://www.jcscp.org/EN/Y2020/V40/I2/105

Fig.1  FTIR of CS and CS-SAS-AAGC
Fig.2  Relations between inhibition efficiency of CS-SAS-AAGC and inhibitor mass fraction in 1.0 mol/L H2SO4 solution at 20 ℃
Fig.3  Straight lines of c/θ-c in 1.0 mol/L H2SO4 at solution 20 ℃
Inhibitorr 2SlopeK / L·mg-1ΔG0 / kJ·mol-1
SAS0.97992.250.03528-25.5
CS0.99171.870.05403-26.6
AA0.99901.440.1103-28.3
CS-SAS-AAGC0.99961.010.2320-30.1
Table 1  Linear regression parameters of c/θ-c and standard adsorption Gibbs free energy ΔG0
Fig.4  Relations between inhibition efficiency and tempera-ture in1.0 mol/L H2SO4 solution
Fig.5  Fitted lines of ln v-1/T in1.0 mol/L H2SO4 solution
Inhibitorr 2Ea / kJ·mol-1A / g·m-2·h-1
Blank0.997046.653.68×109
SAS0.994154.044.61×109
CS0.996152.672.44×1010
AA0.986453.292.01×1010
CS-SAS-AAGC0.989165.236.22×1011
Table 2  Corrosion kinetic parameters of the straight lines oflnv-1/T
Fig.6  Fitted lines of ln(v/T)-1/T in1.0 mol/L H2SO4 solution
Inhibitorr 2?H / kJ·mol-1?S / g·m-2·h-1
Blank0.996744.06-70.51
SAS0.993751.45-49.47
CS0.995750.07-54.79
AA0.988150.69-56.37
CS-SAS-AAGC0.985362.63-27.86
Table 3  Corrosion kinetic parameters of the straight lines ofln(v/T)-1/T
Fig.7  Relations between inhibition efficiency and concen-tration of H2SO4 solution
Fig.8  Fitted lines of lnv-C in H2SO4 solutions at 20 ℃
Inhibitorr 2k / g·m-2·h-1B / g·m-2·h-1·L·mol-1
Blank0.999911.250.51
SAS0.99606.630.60
CS0.99735.690.62
AA0.99653.270.78
CS-SAS-AAGC0.99810.481.26
Table 4  Corrosion kinetic parameters of the straight lines of lnv-C
Fig.9  Changed curves of ηw-t in 1.0 mol/L H2SO4 soluti-ons at 20 ℃
Fig.10  Polarization curves for CRS in 1.0 mol/L H2SO4 solution containing CS-SAS-AAGC at 20 ℃
cmg·L-1EcorrmV (vs SCE)IcorrμA·cm-2-bcmV·dec-1bamV·dec-1ηp%
----44826812417---
10-448941322864.9
30-444341192787.3
50-432121031695.5
Table 5  Potentiodynamic polarization parameters for CRS in 1.0 mol/L H2SO4 solution at 20 ℃
Fig.11  Nyquist plots for steel in 1.0 mol/L H2SO4 soluti-on containing CS-SAS-AAGC at 20 ℃
Fig.12  Equivalent circuit used to fit the EIS
cmg·L-1RsΩ·cm2RtΩ·cm2RLΩ·cm2QΩ·cm2aμΩ·sa·cm-2LH·cm2ηR%
---0.83311775400.8591129---
100.67762963140.9195105159.2
301.7620210692050.8513196384.7
502.6629812321390.8733537889.6
Table 6  Electrochemical impedance spectroscopy parameters for CRS in 1.0 mol/L H2SO4 at 20 ℃
Fig.13  SEM micrographs of cold rolled steel surfaces: (a) before immersion, (b) corrosion immersion in 1.0 mol/L H2SO4 at 20 ℃ for 6 h, (c) corrosion immersion in 1.0 mol/L H2SO4 containing 50 mg/L CS-SAS-AAGC at 20 ℃ for 6 h
Fig.14  Contact angle images of cold rolled steel surfaces: (a) before immersion, (b) corrosion immersion in 1.0 mol/L H2SO4 at 20 ℃ for 6 h, (c) corrosion immersion in 1.0 mol/L H2SO4 containing 50 mg/L CS-SAS-AAGC at 20 ℃ for 6 h
Fig.15  Molecular structures of CS (a) and CS-SAS-AAGC (b)
[1] Raja P B, Ismail M, Ghoreishiamiri S, et al. Reviews on corrosion inhibitors: A short view [J]. Chem. Eng. Commun., 2016, 203: 1145
[2] Umoren S A, Eduok U M. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review [J]. Carbohydr. Polym., 2016, 140: 314
[3] Fiori-Bimbi M V, Alvarez P E, Vaca H, et al. Corrosion inhibition of mild steel in HCl solution by pectin [J]. Corros. Sci., 2015, 92: 192
[4] Azzaoui K, Mejdoubi E, Jodeh S, et al. Eco friendly green inhibitor Gum Arabic (GA) for the corrosion control of mild steel in hydrochloric acid medium [J]. Corros. Sci., 2017, 129: 70
[5] Umoren S A, Banera M J, Alonso-Garcia T, et al. Inhibition of mild steel corrosion in HCl solution using chitosan [J]. Cellulose, 2013, 20: 2529
[6] Bayol E, Gürten A A, Dursun M, et al. Adsorption behavior and inhibition corrosion effect of sodium carboxymethyl cellulose on mild steel in acidic medium [J]. Acta Phys.-Chim. Sin., 2008, 24: 2236
[7] Biswas A, Pal S, Udayabhanu G. Experimental and theoretical studies of xanthan gum and its graft co-polymer as corrosion inhibitor for mild steel in 15% HCl [J]. Appl. Surf. Sci., 2015, 353: 173
[8] Roy P, Karfa P, Adhikari U, et al. Corrosion inhibition of mild steel in acidic medium by polyacrylamide grafted Guar gum with various grafting percentage: Effect of intramolecular synergism [J]. Corros. Sci., 2014, 88: 246
[9] Fu H, Li X H, Li Y X, et al. Corrosion inhibition of cassava starch graft acryl amide copolymer for cold rolled steel in hydrochloric acid [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 265
(付惠, 李向红, 李云仙等. 木薯淀粉接枝共聚物在盐酸介质中对冷轧钢的缓蚀作用 [J]. 中国腐蚀与防护学报, 2011, 31: 265)
[10] Li X H, Deng S D. Cassava starch graft copolymer as an eco-friendly corrosion inhibitor for steel in H2SO4 solution [J]. Korean J. Chem. Eng., 2015, 32: 2347
[11] Kizil R, Irudayaraj J, Seetharaman K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy [J]. J. Agric. Food Chem., 2002, 50: 3912
[12] Zhao T P, Mu G N. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid [J]. Corros. Sci., 1999, 41: 1937
[13] Fuchs-Godec R, Doleček V. A effect of sodium dodecylsulfate on the corrosion of copper in sulphuric acid media [J]. Colloids Surf. A, 2004, 244: 73
[14] Yilmaz N, Fitoz A, Ü Ergun, et al. A combined electrochemical and theoretical study into the effect of 2-((thiazole-2-ylimino) methyl) phenol as a corrosion inhibitor for mild steel in a highly acidic environment [J]. Corros. Sci., 2016, 111: 110
[15] Zakaria K, Hamdy A, Abbas M A, et al. New organic compounds based on siloxane moiety as corrosion inhibitors for carbon steel in HCl solution: Weight loss, electrochemical and surface studies [J]. J. Taiwan Ins. Chem. Eng., 2016, 65: 530
[16] Mathur P B, Vasudevan T. Reaction rate studies for the corrosion of metals in acids—I, iron in mineral acids [J]. Corrosion, 1982, 38: 171
[17] Khadiri A, Saddik R, Bekkouche K, et al. Gravimetric, electrochemical and quantum chemical studies of some pyridazine derivatives as corrosion inhibitors for mild steel in 1M HCl solution [J]. J. Taiwan Ins. Chem. Eng., 2016, 58: 552
[18] Cao C. One electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38: 2073
[19] Markhali B P, Naderi R, Mahdavian M, et al. Electrochemical impedance spectroscopy and electrochemical noise measurements as tools to evaluate corrosion inhibition of azole compounds on stainless steel in acidic media [J]. Corros. Sci., 2013, 75: 269
[20] Lagrenée M, Mernari B, Bouanis M, et al. Study of the mechanism and inhibiting efficiency of 3,5-bis (4-methylthiophenyl) -4H-1,2,4-triazole on mild steel corrosion in acidic media [J]. Corros. Sci., 2002, 44: 573
[21] Lorenz W J, Mansfeld F. Determination of corrosion rates by electrochemical DC and AC methods [J]. Corros. Sci., 1981, 21: 647
[22] Schweinsberg D P, Ashworth V. The inhibition of the corrosion of pure iron in 0.5 M sulphuric acid by n-alkyl quaternary ammonium iodides [J]. Corros. Sci., 1988, 28: 539
[23] Roy S C, Roy S K, Sircar S C. Critique of inhibitor evaluation by polarization measurement [J]. Br. Corros. J., 1988, 32: 102
[1] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[2] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[4] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[5] Zhifeng LIU,Zhiping ZHU,Chun SHI,Zhaoxin HUANG. Preparation of Sulfuric Acid Vapor for Simulation of Sulfuric Acid Dew Point Corrosion by Inert Gas Carrying Method[J]. 中国腐蚀与防护学报, 2020, 40(1): 1-9.
[6] Gaohong CHEN,Yuansen HU,Mei YU,Jianhua LIU,Guoai LI. Effect of Sulfuric Acid Anodizing on Mechanical Properties of 2E12 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[7] Peipei KONG, Nali CHEN, Dezhong BAI, Yueyi WANG, Yong LU, Huixia FENG. Research Progress on Preparation and Corrosion Inhibition Performance of Chitosan Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[8] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[9] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[10] Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[11] Haiyuan WANG, Yinghui WEI, Huayun DU, Baosheng LIU, Chunli GUO, Lifeng HOU. Corrosion Inhibition and Adsorption Behavior of Green Corrosion Inhibitor SDDTC on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[12] Zhixiao XU,Herong ZHOU,Wang YAO. Corrosion Behavior of Automotive Cold Rolled Steels DC06 and DP600 in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
[13] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[14] Xiang ZUO,Yufeng JIANG,Ting CHI,Xin HU,Dongmei CAO,Feng CAI. Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
[15] Chunxia WANG,Jingping CHEN,Xiaohong ZHANG,Chengyin WANG. Corrosion Inhibition of Octyl Isoquinolinium Bromide on Q235 Carbon Steel in HCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
No Suggested Reading articles found!