Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (3): 260-266    DOI: 10.11902/1005.4537.2015.201
Orginal Article Current Issue | Archive | Adv Search |
Marine Atmospheric Corrosion Behavior of 5A90 Al-Li Alloy
Yan SU(),Lunwu ZHANG,Yong ZHONG
No. 59 Institute of China Ordnance Industry, Chongqing 400039, China
Download:  HTML  PDF(4908KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure, corrosion behavior and the influence of corrosion on mechanical performance of 5A90 Al-Li alloy and 2D12 alloy were studied comparatively by means of X-ray diffraction, metallurgical analysis, scanning electron microscopy and marine atmospheric exposure test, while the relevant corrosion mechanism was also discussed. The results showed that the strengthening phases δ ′-Al3Li and T-Al2MgLi of 5A90 Al-Li alloy are fine and dispersed quite uniformly. 5A90 Al-Li alloy showed corrosion characteristics in micro-scale apparently different from 2D12 alloy, i.e. the corrosion of the former occurred simultaneously at grain boundaries and in grains. The corrosion process of 5A90 Al-Li alloy did not follow the power function in terms of corrosion mass loss. The mechanical performance degradation of 5A90 Al-Li alloy due to corrosion is apparently faster than that of 2D12 alloy. The fracture manner of 5A90 Al-Li alloy is mainly dimple fracture, while the environmental corrosion promotes the transition from ductile fracture to intergranular brittle fracture.

Key words:  Al-Li alloy      microstructure      corrosion behavior      natural environmental test     
Received:  13 November 2015     

Cite this article: 

Yan SU,Lunwu ZHANG,Yong ZHONG. Marine Atmospheric Corrosion Behavior of 5A90 Al-Li Alloy. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 260-266.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.201     OR     https://www.jcscp.org/EN/Y2016/V36/I3/260

Alloy Li Mg Zr Mn Ni Zn Fe Cu Si Na Ti Al
5A90 1.9~2.3 4.5~6 0.08~0.15 --- --- --- 0.2 0.05 0.15 0.0015 0.1 Bal.
2D12 --- 1.2~1.8 --- 0.3~0.9 0.05 0.1 0.3 3.8~4.9 0.2 --- 0.1 Bal.
Table 1  Chemical compositions of 5A90 aluminum-lithium alloy and 2D12 aluminum alloy (mass fraction / %)
Fig.1  Microstructures of 5A90-T3 (a) and 2D12-T4 (b) alloys
Fig.2  XRD pattern of 5A90 aluminum lithium alloy
Fig.3  Surface images of 5A90 Al-Li alloy exposed to oceanic atmosphere for 3 a (a, c) and 6 a (b, d) with (a, b) and without (c, d) corrosion products
Alloy Test time/a
0.5 1 1.5 2 2.5 3 4
5A90 0.648 0.865 1.250 0.846 1.030 0.294 0.670
2D12 2.737 1.999 2.125 1.620 1.815 1.137 1.350
Table 2  Average corrosion rates of 5A90 and 2D12 alloys (μm / a)
Fig.4  Fitting curves of the corrosion depth of 5A90 and2D12 alloys
Fig.5  Cross-section morphologies of 5A90 (a, b) and 2D12 (c, d) aluminum alloys after corrosion for0.5 a (a, c) and 1 a (b, d)
Fig.6  SEM image of cross section of 5A90 aluminum-lithium alloy (high magnification viewof Fig.5b)
Fig.7  Tensile strength (a) and percentage elongation (b) of 5A90 and 2D12 aluminum alloy as a function of exposure time
Fig.8  Tensile fracture morphologies of 5A90 aluminum-lithium alloy after corrosion for 0 a (a), 3 a (b) and 6 a (c)
[1] LI J F, Zheng Z Q, Chen Y L, et al.A1-Li alloys and their application in aerospace industry[J]. Aerosp. Mater. Technol., 2012, 42(1): 13
[1] (李劲风, 郑子樵, 陈永来等. 铝锂合金及其在航天工业上的应用[J]. 宇航材料工艺, 2012, 42(1): 13)
[2] Chen J.The performance characteristics of Al-Li alloys and their application in aeroplane[J]. Civil Aircraft Design Res., 2010, (1): 39
[2] (陈健. 铝锂合金的性能特点及其在飞机中的应用研究[J]. 民用飞机设计与研究, 2010, (1): 39)
[3] Lequeu P.Advances in aerospace aluminum[J]. Adv. Mater. Proc., 2008, (2): 47
[4] Cui L, Li X Y, He D Y, et al.The laser welding line microstructure characteristics of 5A90 aluminum lithium alloy[J]. Trans. China Weld. Inst., 2010, 31(9): 77
[4] (崔丽, 李晓延, 贺定勇等. 5A90铝锂合金激光焊焊缝微观组织特佂[J]. 焊接学报, 2010, 31(9): 77)
[5] Cai H N.The Brief Describe of Weapon Arming Basic Material System [M]. Beijing: National Defence Industry Publishing Company, 2007: 504
[5] (才鸿年. 武器装备基本材料体系要览 [M]. 北京: 国防工业出版社, 2007: 504)
[6] Chen Y L, Du Z H, Zhang Y W, et al.Influence of heat treatment on intercrystalline corrosion and spalling corosion of new high-strengthAl-Li alloy[J]. Aerosp. Mater. Technol., 2011, 41(2): 87
[6] (陈永来, 杜志惠, 张宇伟等. 热处理对新型高强铝锂合金晶间腐蚀和剥蚀性能的影响[J]. 宇航材料工艺, 2011, 41(2): 87)
[7] Chen Y Y, Zheng Z Q, Wei X Y, et al.Intergranular corrosion and exfoliation corosion behaviors of 2197 AI-Li alloy with different aging treatments[J]. Corros. Prot., 2010, 31(1): 29
[7] (陈圆圆, 郑子樵, 魏修宇等. 2197铝锂合金在不同热处理状态下的晶间腐蚀及剥蚀行为[J]. 腐蚀与防护, 2010, 31(1): 29)
[8] Li J F, Chen W J, Zhao X S, et al.Corrosion behavior of 2195 and 1420 Al-Li alloys in neutral 3.5%NaCl solution under tensile stress[J]. Trans. Nonferrous Met. Soc. China, 2006, 16(5): 1171
[9] Yue X U, Wang X, Yan Z, et al.Corrosion properties of light-weight and high-strength 2195 Al-Li alloy[J]. Chin. J. Aeronautics, 2011,24(5): 681
[10] Buchheit R G, Moran J P, Stoner G E.Localized corrosion behavior of alloy 2090: The role of microstructure heterogeneity[J]. Corrosion, 1990, 46(8): 610
[11] Davó B, de Damborenea J J. Use of rare earth salts as electrochemical corrosion inhibitors for an Al-Li-Cu(8090) alloy in 3.56%NaCl[J]. Electrochim. Acta, 2004, 49(27): 4957
[12] Liu S M, Wang Z G.Fatigue properties of 8090 Al-Li alloy processedby equal-channel angular pressing[J]. Scr. Mater., 2003, 48(10): 1421
[13] Cui Y H, Zhu Z Y, Liu S T, et al.The corrosion behaviors and mechanism of 1420 Al-Li[J]. Scr. Mater., 1996, 34(5): 781
[14] Feng Z H, Lu Z, Su H, et al.Study of the microstructure and tensile properties of 5A90 aluminum lithium alloy[J]. J. Hunan Univ., 2011, 38(12): 52
[14] (冯朝辉, 陆政, 苏海等. 5A90铝锂合金显微组织及力学性能的研究[J]. 湖南大学学报, 2011, 38(12): 52)
[15] Li J F, Zheng Z Q, Ren W D.Function mechanism of secondary phase on localized corrosion of Al alloy[J]. Mater. Rev., 2005, 19(2): 81
[15] (李劲风, 郑子樵, 任文达. 第二相在铝合金局部腐蚀中的作用机制[J]. 材料导报, 2005, 19(2): 81)
[16] Zhang X M, Ye L Y, Liu Y W, et al.Formation mechanism of gradient-distributed particles and their effects on grain structure in 01420 Al-Li alloy[J]. J. Central South Univ. Technol., 2008, 15(2): 147
[17] Ma T, Wang Z Y, Han W.A review of atmospheric corrosion of aluminum and aluminum alloys[J]. Corros. Sci. Prot. Technol., 2004, 16(3): 155
[17] (马腾, 王振尧, 韩薇. 铝和铝合金的大气腐蚀[J]. 腐蚀科学与防护技术, 2004, 16(3): 155)
[18] Moran J P, Starke E A, Stoner G E, et al.The influence of composition and microstructure on the corrosion behavior of two AlLiX alloys[J]. Corrosion, 1987, 43(6): 374
[19] Yi J L, Chen L, Chen J, et al.Function mechanism of main secondary phases generated by alloying on localized corrosion of Al-Li alloys[J]. Corros. Prot., 2011, 32(10): 822
[19] (易俊兰, 陈磊, 陈洁等. 合金化中主要析出相对铝锂合金局部腐蚀的影响机制研究进展[J]. 腐蚀与防护, 2011, 32(10): 822)
[1] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[2] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[3] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[4] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[5] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[6] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[8] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[10] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[11] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[12] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[13] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[14] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[15] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
No Suggested Reading articles found!