Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (4): 381-388    DOI: 10.11902/1005.4537.2019.175
Current Issue | Archive | Adv Search |
Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions
WEN Yang1(), XIONG Lin1, CHEN Wei1, XUE Gang1, SONG Wenxue2
1. School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
2. Baotou Highway Engineering Company Ltd. , Baotou 014010, China
Download:  HTML  PDF(3337KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Cl- permeation resistance of polyvinyl alcohol fiber reinforced concrete under cyclic tests of drying in air and wetting in chloride salt solution by means of nuclear magnetic resonance (NMR) technique and microscopic scanning electron microscopy (SEM). The distribution of pores and chloride salts in concretes with different among of 18 mm long polyvinyl alcohol (PVA) fibers were assessed. The results show that under the same number of dry-wet cycle, the Cl- permeation resistance for the concretes increases first and then decreases with the increase of fiber content. The concrete with 1.2 kg/m3 polyvinyl alcohol fiber has a maximum Cl- penetration depth of 4.1 mm, and the peak value of free chloride ion content is 0.17%, which is 29.3% and 32% lower than that of the reference concrete, respectively, but when the fiber content exceeds 1.2 kg/m3, the Cl- permeation resistance of the concrete degraded, namely its maximum intrusion depth rose to 5.2 mm with Cl- penetration resistance of only 10.3% above that of the plain concrete. With the increase number of the dry-wet cycle, the peak value of the free Cl- content of the fiber-filled concretes filled with the same among of PVA was continuously shifted to the right side, correspondingly, the maximum intrusion depth and free Cl- content increased significantly. It follows that the fiber content and the number of dry-wet cycle have significant effect on the Cl- penetration resistance of PVA fiber concrete.

Key words:  polyvinyl alcohol fiber concrete      dry and wet cycle      nuclear magnetic resonance      microstructure      resistance to Cl- permeability     
Received:  09 October 2019     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51768056);National Natural Science Foundation of China(51868063);Natural Science Foundation of Inner Mongolia(2019MS05038)
Corresponding Authors:  WEN Yang     E-mail:  wenyangalbert@163.com

Cite this article: 

WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 381-388.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.175     OR     https://www.jcscp.org/EN/Y2020/V40/I4/381

CodeCementWaterSandStoneFly ashWater reducing agentFiber
CC3301708371061615.4490
PC-0.83301708371061615.4490.8
PC-1.23301708371061615.4491.2
PC-1.63301708371061615.4491.6
Table 1  PVA fiber concrete mix ratio (kg/m3)
Fig.1  Schematic diagram of the maximum intrusion depth of Cl- in concrete
Fig.2  Change of Cl- content in test pieces with different PVA fiber content after 28 d (a), 56 d (b), 84 d (c) and 112 d (d) of dry-wet cycle
Code28 d56 d84 d112 d
CC11.46.344.934.98
PC-0.88.74.453.83.53
PC-1.28.393.883.832.66
PC-1.610.25.464.32.8
Table 2  Free Cl- diffusion coefficient (10-6 mm2·s-1)
Fig.3  T2 spectrum of PVA fiber concrete with different dosages
CodeT2 Spectral areaFirst peakSecond peakThird peak
AreaPercentage / %AreaPercentage / %AreaPercentage / %
CC2308950.941.2752.432.6604.726.2
PC-0.818241067.158.5623.834.2133.17.3
PC-1.21446920.362.4344.123.8181.613.8
PC-1.61578826.952.4517.632.8233.514.8
Table 3  T2 spectral area of PVA fiber concrete under different dosages
Fig.4  Pore size distribution of PVA fiber concrete under different dosages
Fig.5  Micro-morphologies of PVA concrete before wet and dry circulation: (a) CC, (b) PC-0.8, (c) PC-1.2, (d) PC-1.6
Fig.6  Micro-morphologies of 112 d PVA concrete in wet and dry cycle: (a) CC, (b) PC-0.8, (c) PC-1.2, (d) PC-1.6
[1] Wu Z Y, Yu H F, Ma H Y, et al. Calculating the service life of high volume slag concrete structure based on reliability in ocean splash area [J]. Mater. Rep., 2019, 33: 264
(吴彰钰, 余红发, 麻海燕等. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测 [J]. 材料导报, 2019, 33: 264)
[2] Wang L, Niu D T, Wang C F, et al. Analysis on chloride ion permeability of polypropylene fiber concrete under the effect of wet-dry cycles [J]. Build. Struct., 2011, 41(S2): 180
(王磊, 牛荻涛, 王晨飞等. 聚丙烯纤维混凝土在干湿循环下的氯离子渗透性能研究 [J]. 建筑结构, 2011, 41(S2): 180)
[3] Niu J G, Wang X P. Experimental study on chloride ion permeability of steel-plastic fiber lightweight aggregate concrete [J]. Bull. Chin. Ceram. Soc., 2018, 37: 2025
(牛建刚, 王潇鹏. 塑钢纤维轻骨料混凝土氯离子渗透性试验研究 [J]. 硅酸盐通报, 2018, 37: 2025)
[4] He Y B, Chen B X, Liu S M, et al. Study on resistance of chloride ion penetration in fly ash/silicon ash polypropylene fiber concrete under preloading condition [J]. J. Hunan Univ. (Nat. Sci.), 2017, 44(3): 97
(何亚伯, 陈保勋, 刘素梅等. 预加荷载作用下粉煤灰/硅灰纤维混凝土氯离子渗透性能研究 [J]. 湖南大学学报 (自然科学版), 2017, 44(3): 97)
[5] Berrocal C G, Löfgren I, Lundgren K. The effect of fibres on steel bar corrosion and flexural behaviour of corroded RC beams [J]. Eng. Struct., 2018, 163: 409
[6] Han X Q, Zhan S L, Xu Q, et al. Effect of dry-wet cycling on resistance of concrete to chloride ion permeation erosion [J]. Acta Mater. Compos. Sin., 2020, 37: 198
(韩学强, 詹树林, 徐强等. 干湿循环作用对混凝土抗氯离子渗透侵蚀性能的影响 [J]. 复合材料学报, 2020, 37: 198)
[7] Zhou H Y, Zhu X M, Liu X Y. Discussion on the aging mechanism and prevention methods of polymer materials [J]. Private. Technol., 2018, (12): 25
(周鸿云, 朱勋铭, 刘翔宇. 高分子材料老化机理及防治方法探讨[J]. 民营科技, 2018, (12): 25)
[8] Liu S G, Li H L, Zhang J, et al. Chlorine ion in PVA fiber cement-based composite materials combining ability [J]. Concrete, 2016, (4): 1
(刘曙光, 李海林, 张菊等. PVA纤维水泥基复合材料中氯离子结合能力 [J]. 混凝土, 2016, (4): 1)
[9] Liu Q, Zhao T J, Cao C W, et al. Silver nitrate color method and its application in mortar research [J]. Coal Ash, 2016, 28(5): 36
(刘庆, 赵铁军, 曹承伟等. 硝酸银显色法及其在砂浆研究中的应用 [J]. 粉煤灰, 2016, 28(5): 36)
[10] Liu J, Su P, Ou G F, et al. Factors influencing chloride penetration depth using AgNO3 colorimetric method [J]. J. Build. Mater., 2015, 18: 518
(刘军, 苏鹏, 区光锋等. AgNO3显色法判断氯离子渗透深度的影响因素 [J]. 建筑材料学报, 2015, 18: 518)
[11] Sun J C. Study on the permeability of chloride ions in concrete under stress and wetting-drying cycles factors [D]. Beijing: China Building Materials Academy, 2013
(孙继成. 应力及干湿循环作用下氯离子在混凝土中的渗透性研究 [D]. 北京: 中国建筑材料科学研究总院, 2013)
[12] Tian X K, Wang H L, Cheng X D, et al. Effect of crack characteristics on chloride transport in concrete: An overview [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 309
(田雪凯, 王海龙, 程旭东等. 混凝土裂缝形态参数对Cl-传输性能影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 309)
[13] Liu Q, Shen X D, Xue H J, et al. Durability of pumice concrete under chloride erosion and wet-dry cycling conditions [J]. Trans. Chin. Soc. Agric. Eng., 2018, 34(21): 137
(刘倩, 申向东, 薛慧君等. 氯盐侵蚀和干湿循环条件下浮石混凝土的耐久性 [J]. 农业工程学报, 2018, 34(21): 137)
[14] Wang Z W, Liu S G, Zhang J, et al. Research on chloride erosion resistance of polyvinyl alcohol fiber reinforced cementitious composites (PVA-FRCC) under wet-dry cycles [J]. China Concr. Cem. Prod., 2015, (8): 44
(王志伟, 刘曙光, 张菊等. 湿-烘循环作用下PVA纤维增强水泥基复合材料抗氯离子侵蚀性能研究 [J]. 混凝土与水泥制品, 2015, (8): 44)
[15] Zhang P, Zhao S K, Chen J Z, et al. Permeability resistance of nano-particles and PVA fiber reinforced cement based composites [J]. Bull. Chin. Ceram. Soc., 2017, 36(S1): 153
(张鹏, 赵士坤, 陈继周等. 纳米粒子和PVA纤维增强水泥基复合材料抗渗性能研究 [J]. 硅酸盐通报, 2017, 36(S1): 153)
[16] Zhong J F, Wang Z L, Gao Q F. Chloride ion resistance of cementitious composites with PVA fiber reinforcement [J]. Concrete, 2019, (6): 105
(钟俊飞, 王宗林, 高庆飞. PVA纤维增强水泥基复合材料抗氯离子渗透性能 [J]. 混凝土, 2019, (6): 105)
[1] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[2] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[3] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[4] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[5] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[6] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[7] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[8] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[9] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[10] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[11] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[12] Guangrui JIANG, Guanghui LIU. Microstructure and Corrosion Resistance of Solidified Zn-Al-Mg Alloys[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[13] Zhenguo NIU, Pushan GUO, Hong YE, Lijing YANG, Cheng XU, Zhenlun SONG. Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[14] Yu TENG,Xu CHEN,Chuan HE,Yichuang WANG,Bing WANG. Effect of Microstructure on Corrosion Behavior of X70 Steel in 3.5%NaCl Solution with SRB[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[15] Zhenwei GENG,Daihong XIAO. Effect of Zn Addition on Microstructure and Corrosion Property of As-extruded Mg-13Gd-2Cu Alloy[J]. 中国腐蚀与防护学报, 2016, 36(6): 595-603.
No Suggested Reading articles found!