Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (4): 349-356    DOI: 10.11902/1005.4537.2015.145
Current Issue | Archive | Adv Search |
Prediction Model for Corrosion of Aluminum 1060 in Marine Atmospheric Environments
Haixia LIU1,Xuequn CHENG1,2(),Xiaogang LI1,2,3,Kui XIAO1,2,Chaofang DONG1,2
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2. Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083, China
3. Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Download:  HTML  PDF(4633KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of pure aluminum A1060 in tropic marine environment was simulated by cyclic immersion test, while the correlation of the corresponding results of indoor cyclic immersion test and outdoor marine atmospheric corrosion test of A1060 was comparatively studied in terms of its corrosion morphology, corrosion products and corrosion kinetics by means of weight loss measurement scanning, electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results showed that the corrosion morphologies and phase constituents compositions of corrosion products after cyclic immersion test agreed fairly well with those after the real atmospheric test. Thereafter, a prediction model for the C corrosion prediction model of aluminum 1060 in two kinds of marine atmospheric environments, which aims to simulate the atmospheric environments at Wanning and Xisha areas in the South China Sea, was established built combined with Grey correlation method, while the corresponding arithmetic expressions could be described as follows i.e. TWN=146.7t 1.29 and TXS=862.3t 0.85 respectively.

Key words:  A1060      marine atmosphere      corrosion      life prediction     

Cite this article: 

Haixia LIU,Xuequn CHENG,Xiaogang LI,Kui XIAO,Chaofang DONG. Prediction Model for Corrosion of Aluminum 1060 in Marine Atmospheric Environments. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 349-356.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.145     OR     https://www.jcscp.org/EN/Y2016/V36/I4/349

Exposure site Cl- deposition ratemg(100 cm2d)-1 SO2 deposition ratemg(100 cm2d)-1 Tow (h/year)RH>80% / ha-1
Wanning 0.387 0.0478 6736
Xisha 1.123 <0.001 5600
Table 1  Climatic parameters and atmospheric pollutants of atmospheric test station[14,15]
Fig.1  SEM images of corrosion products formed on pure A1060 after cyclic immersion experiments for 720 h in 1% (a), 2% (b), 3.5% (c) and 5% (d) NaCl solutions
Fig.2  Surface images of pure A1060 after removing of corrosion products formed during cyclic experiment for 720 h in 1% (a), 2% (b), 3.5% (c) and 5% (d) NaCl solutions
Fig.3  EDS results of the surfaces of A1060 pure aluminum after cyclic immersion experiments in NaCl solutions
Fig.4  XRD spectrum of A1060 aluminum after 720 h cyclic immersion experiment in 5%NaCl solution
Fig.5  Weight loss curves of A1060 pure aluminum during cyclic immersion in 1% (a), 2% (b), 3.5% (c) and 5% (d) NaCl solutions
NaCl concentration A n R2
1% 0.136 0.333 0.959
2% 0.082 0.427 0.946
3.5% 0.014 0.775 0.902
5% 0.016 0.716 0.910
Table 2  Fitting data of corrosion kinetic curves
Test time X0wn X1 X2 X3 X4
0.5 a (144 h) 0.47 0.712 0.685 0.659 0.562
1 a (288 h) 0.69 0.896 0.920 1.128 0.923
2 a (576 h) 1.01 1.129 1.237 1.930 1.516
3 a (864 h) 1.26 1.292 1.471 2.642 2.026
4 a (1152 h) 1.48 1.422 1.663 3.302 2.490
Table 3  Statistical magnitude of corrosion mass loss in Wanning
Test time X0xs X1 X2 X3 X4
0.5 a (72 h) 1.31 0.565 0.509 0.385 0.342
1 a (144 h) 2.0 0.712 0.685 0.659 0.562
2 a (288 h) 3.05 0.896 0.920 1.128 0.923
3 a (432 h) 3.91 1.026 1.094 1.544 1.233
4 a (576 h) 4.66 1.129 1.237 1.930 1.516
Table 4  Statistical magnitude of corrosion mass loss in isha
Test time Y0xs Y1 Y2 Y3 Y4
0.5 a (72 h) 1 1 1 1 1
1 a (144 h) 1.526 1.260 1.344 1.711 1.643
2 a (288 h) 2.329 1.587 1.808 2.928 2.698
3 a (432 h) 2.983 1.816 2.149 4.009 3.607
4 a (576 h) 3.555 1.999 2.430 5.011 4.432
Table 5  Pretreatment results of corrosion mass loss in Wanning
Test time Y0wn Y1 Y2 Y3 Y4
0.5 a (144 h) 1 1 1 1 1
1 a (288 h) 1.465 1.260 1.344 1.711 1.643
2 a (576 h) 2.144 1.587 1.807 2.928 2.698
3 a (864 h) 2.682 1.816 2.149 4.009 3.607
4 a (1152 h) 3.140 1.999 2.430 5.011 4.432
Table 6  Pretreatment results of corrosion mass loss inXisha
NaCl concentration Wanning Xisha
1% 0.68 0.58
2% 0.77 0.64
3.5% 0.62 0.60
5% 0.68 0.69
Table 7  Grey correlations of atmospheric exposuretests and accelerated tests
Fig.6  γ and K of A1060 for the corrosion in various NaCl solutions used to simulate Wanning marine atmospheric environment
Fig.7  γ and K of A1060 for the corrosion in various NaCl solutions used to simulate Xisha marine atmospheric environment
Outdoor exposure time / a Indoor simulated accelerated time (WN) / h Indoor simulated accelerated time (XS) / h
1 147 862
2 359 1554
4 877 2802
6 1480 3954
8 2145 5050
Table 8  Indoor simulated accelerated timetable obtained based on prediction model for corrosion of A1060 in anning and Xisha
[1] An B G, Zhang X Y, Han E-H, et al.Current status of atmospheric corrosion of aluminium and aluminium alloys[J]. Chin. J. Nonferrous Met., 2001, 11(z2): 11
[1] (安百刚, 张学元, 韩恩厚. 铝和铝合金的大气腐蚀研究现状[J]. 中国有色金属学报, 2001, 11(z2): 11)
[2] Li T, Li X G, Dong C F, et al.Characterization of atmospheric corrosion of 2A12 aluminum alloy in tropical marine environment[J]. J. Mater. Eng. Perform., 2010, 19(4): 591
[3] Sun S, Zheng Q, Li D, et al.Exfoliation corrosion of extruded 2024-T4 in the coastal environments in China[J]. Corros. Sci., 2011, 53(8): 2527
[4] Sun S, Zheng Q, Li D, et al.Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments[J]. Corros. Sci., 2009, 51(4): 719
[5] Luo L.Method of salt spray test[J]. Equip. Environ. Eng., 2011, 8(4): 77
[5] (罗兰. 盐雾试验方法探讨[J]. 装备环境工程, 2011, 8(4): 77)
[6] Xu N X, Zhang C D, Ding C H.A new scheme to accelerate the atmospheric corrosion test[J]. J. Chin. Soc. Corros. Prot., 1990,10(3): 228
[6] (徐乃欣, 张承典, 丁翠红. 加速大气腐蚀试验的一个新方案[J]. 中国腐蚀与防护学报, 1990, 10(3): 228)
[7] Li J L M S Z. Development of an artificial climatic complex accelerated corrosion tester and investigation of complex accelerated corro ion test methods[J]. Environ. Technol., 1999, 55(5): 498
[8] Wang J, Wang Z Y, Ke W.Corrosion behaviour of weathering steel in diluted Qinghai salt lake water in a laboratory accelerated test that involved cyclic wet/dry condition[J]. Mater. Chem. Phys., 2010, 124(2): 952
[9] Wei J, Fu X X, Dong J H, et al.Corrosion evolution of reinforcing steel in concrete under dry/wet cyclic conditions contaminated with chloride[J]. J. Mater. Sci. Technol., 2012, 28(10): 905
[10] Lyon S B, Thompson G E.Accelerated atmospheric corrision testing using a cyclic wet/dry exposure test: alunimum, galvanized steel, and steel[J]. Corrosion, 1987, 43(12): 719
[11] Wang Z Y, Yu G C, Han W.Correlation between atmospheric exposure corrosion and indoor accelerated corrosion simulation of steel[J]. Corros. Sci. Prot. Technol., 2004, 16(2): 70
[11] (王振尧, 于国才, 韩薇. 钢的大气暴露腐蚀与室内模拟加速腐蚀的相关性[J]. 腐蚀科学与防护技术, 2004, 16(2): 70)
[12] Zheng Q F, Sun S Q, Wen J G.Atmospheric corrosion and it's influence factors in aluminum and aluminum alloys in China[J]. Corros. Prot., 2009, 30(6): 359
[12] (郑弃非, 孙霜青, 温军国. 铝及铝合金在我国的大气腐蚀及其影响因素分析[J]. 腐蚀与防护, 2009, 30(6): 359)
[13] Montoya P, Díaz I, Granizo N, et al.An study on accelerated corrosion testing of weathering steel[J]. Mater. Chem. Phys., 2013, 142(1): 220
[14] Cui Z Y, Li X G, Xiao K, et al.Atmospheric corrosion behaviour of pure Al 1060 in tropical marine environment[J]. Corros. Eng. Sci. Technol., 2015, 50(6): 438
[15] Cao C N.Natural Environmental Corrosion of Chinese Materials[M]. Beijing: Chemical Industry Press, 2005
[15] (曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005)
[16] Cai J P, Liu M, Luo Z H, et al.Study on accelerated tests for aluminum alloy atmospheric corrosion[J]. J. Chin. Soc. Corros. Prot.,2005, 25(5): 262
[16] (蔡建平, 刘明, 罗振华等. 航空铝合金大气腐蚀加速试验研究[J]. 中国腐蚀与防护学报, 2005, 25(5): 262)
[17] Lin C, Wang F P, Li X G.Progress of atmospheric corrosion research[J]. J. Chin. Soc. Corros. Prot., 2004, 24(4): 245
[17] (林翠, 王凤平, 李晓刚. 大气腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2004, 24(4): 245)
[18] Wang L, Mou X L, Zhu L.Review of atmospheric corrosivity classification. Equipment environmental engineering[J]. 2010, 7(6): 24
[18] (王玲, 牟献良, 朱蕾等. 大气环境腐蚀性分类分级研究综述[J]. 装备环境工程, 2010, 7(6): 24)
[19] Wang Z Y, Ma T, Han W, et al.Corrosion behavior on aluminum alloy LY 12 in simulated atmospheric corrosion process[J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 326
[20] Boxley C J.Al203 film dissolution in aqueous chloride solutions[J]. Electrochem. Solid State Lett., 2003, 6(10): 38
[21] El-Mahdy G A, Kim K B. AC impedance study on the atmospheric corrosion of aluminum under periodic wet-dry conditions[J]. Electrochim. Acta, 2004, 49(12): 1937
[22] Szklarska-Smialowska Z.Pitting corrosion of aluminum[J]. Corros. Sci., 1999, 41(9): 1743
[23] Boag A, Taylor R J, Muster T H, et al.Stable pit formation on AA2024-T3 in a NaCl environment[J]. Corros. Sci., 2010, 52(1): 90
[24] Zhu H M, Zheng Q F, Xie S S.Atmospheric corrosion of Al and Al alloy in wanning area[J]. Rare Met., 2002, 26(6): 456
[24] (朱红嫚, 郑弃非, 谢水生. 万宁地区铝及铝合金不同距海点的大气腐蚀研究[J]. 稀有金属, 2002, 26(6): 456)
[25] Grilli R, Baker M A, Castle J E, et al.Localized corrosion of a 2219 aluminium alloy exposed to a 3.5%NaCl solution[J]. Corros. Sci., 2010, 52(9): 2855
[26] Zhou H R, Li X G, Dong C F.Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it's anodic film[J]. Equip. Environ. Eng., 2006, 3(1): 1
[26] (周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展[J]. 装备环境工程, 2006, 3(1): 1)
[27] Pyun S I, Moon S M, Ahn S H, et al.Effects of Cl-, NO3- and SO42- ions on anodic dissolution of pure aluminum in alkaline solution[J]. Corros. Sci., 1999, 41: 653
[28] Mou X L,Tian Y E, Wang X H.Correlation between accelerated test and atmospheric corrosion test for carbon steel and low alloy steel[J]. Environ. Technol., 2001, (4): 14
[28] (牟献良, 田月娥, 汪学华. 碳钢和低合金钢模拟加速试验与大气腐蚀试验的相关性[J]. 环境技术, 2001, (4): 14)
[29] Tian Y W, Cheng X Q, Li X G.A study of simulated indoor accelerated testing method for marine atmospheric corrosion[J]. Corros. Prot., 2014, 35(8): 781
[29] (田玉琬, 程学群, 李晓刚. 海洋大气腐蚀的室内模拟加速试验方法研究[J]. 腐蚀与防护, 2014, 35(8): 781)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!