Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (3): 225-230    DOI: 10.11902/1005.4537.2015.120
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behavior of X70 Mild Steel during Transportation of Gaseous- and Supercritical-CO2 Fluids
Xiu JIANG(),Xiaoliang SONG,Dingrong QU,Xiaohui LIU
SINOPEC Research Institute of Safety Engineering, Qingdao 266071, China
Download:  HTML  PDF(1166KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of X70 mild steel was investigated in the case of water deposited in CO2 pipeline by means of weight loss method and scanning electron microscopy (SEM). Results showed that general corrosion rate of X70 steel decreased with the increase of CO2 pressure from 4 to 12 MPa at 35 ℃. FeCO3 film and severe general corrosion was observed at 4 MPa, while thin and discontinuous corrosion product and serious pitting corrosion attack were found under other CO2 pressure conditions. It is of great corrosion risk to transport CO2 in gaseous or supercritical status for X70 mild steel if free water is formed in the pipeline.

Key words:  gaseous      supercritical      CO2      corrosion      X70 steel     
Received:  21 July 2015     

Cite this article: 

Xiu JIANG,Xiaoliang SONG,Dingrong QU,Xiaohui LIU. Corrosion Behavior of X70 Mild Steel during Transportation of Gaseous- and Supercritical-CO2 Fluids. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 225-230.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.120     OR     https://www.jcscp.org/EN/Y2016/V36/I3/225

Fig.1  Surface images of the corrosion products (a, c) and metal substrate after film removal (b, d) for X70 steel corroded at 35 ℃ under CO2 pressures of 4 MPa (a, b) and 6 MPa (c, d)
Fig.2  Variations of general corrosion rate of X70 steel with supercritical CO2 pressure at 35 ℃
Fig.3  SEM images of corrosion products formed on X70 steel at 35 ℃ under CO2 pressures of 8 MPa (a, b), 9 MPa (c, d), 10 MPa (e, f) and 12 MPa (g, h)
Fig.4  SEM images and EDX analysis results for X70 steel at 35 ℃under CO2 pressures of8 MPa (a) and 9 MPa (b)
Fig.5  Surface morphologies of X70 steel after removal of the corrosion products formed at 35 ℃ under CO2 pressures of 8 MPa (a), 9 MPa (b), 10 MPa (c) and 12 MPa (d)
Fig.6  Variations of general corrosion rate of X70 steel at CO2 pressure of 4~12 MPa and 35 ℃
Fig.7  Variations of pH value of NaCl solution as a functionof CO2 pressure at 35 ℃
[1] Lone S, Cockerill T, Macchietto S.The techno-economics of a phased approach to developing a UK carbon dioxide pipeline network[J]. J. Pipeline. Eng., 2010, 11(3): 223
[2] Sandana D, Hadden M, Race J, et al.Transport of gaseous and dense carbon dioxide in pipelines: Is there an internal corrosion risk[J]. J. Pipeline. Eng., 2012, 11(3): 229
[3] Waard C D, Milliams D E.Carbonic acid corrosion of steel[J]. Corrosion, 1975, 31(5): 177
[4] Nesic S.Key issues related to modeling of internal corrosion of oil and gas pipelines-A review[J]. Corros. Sci., 2007, 49: 4308
[5] Gao K W, Yu F, Pang X L, et al.Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates[J]. Corros. Sci., 2008, 50(10): 2796
[6] Zuo T, Liu X H, Jiang X, et al.Development of research in corrosion on supercritical CO2 transportation pipelines[J]. Petrochem. Corros. Prot., 2011, 28(6): 1
[6] (左甜, 刘小辉, 蒋秀等. 超临界CO2输送管道的腐蚀研究进展[J]. 石油化工腐蚀与防护, 2011, 28(6): 1)
[7] Jiang X, Qu D R, Liu X H.Supercritical CO2 pipeline transportation and safety[J]. Oil Gas Storage Transp., 2013, 32(8): 809
[7] (蒋秀, 屈定荣, 刘小辉. 超临界CO2管道输送与安全[J]. 油气储运, 2013, 32(8): 809)
[8] Evans W C, Kling G W, Tuttle M L, et al.Gas buildup in lake Nyos, camernoon: The recharge process and its consequences [J]. Appl. Geochem., 1993, 8: 207
[9] Seiersten M.Materials selection for separation, transportation and disposal of CO2 [A]. Corrosion/01[C]. Houston: NACE, 2001
[10] Jiang X, Song X L, Zhang Y L, et al.Impact of CO2 transportation technology on the corrosion of X65 pipeline steel [A]. Proceedings of CIPC 2013 China International Oil & Gas Pipeline Conference[C]. Langfang, 2013: 41
[10] (蒋秀, 宋晓良, 张艳玲等. CO2输送工艺对X65管道腐蚀的影响[A]. Proceedings of CIPC 2013 China International Oil & Gas Pipeline Conference[C]. 廊坊: 2013: 41)
[11] Jiang X, Qu D R, Song X L, et al.Impact of water content on corrosion behavior of CO2 transportation pipeline [A]. Corrosion/15[C]. Houston: NACE, 2015
[12] Xiang Y, Wang Z, Yang X, et al.The upper limit of moisture content for supercritical CO2 pipeline transport[J]. J. Supercrit. Fluid., 2012, 67: 14
[13] Spycher N, Pruess K, Ennis-King J.CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 ℃ and up to 600 bar[J]. Geochim. Cosmochim. Acta, 2003, 67(16): 3015
[14] Choi Y S, Nesic S.Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments[J]. Int. J. Greenh. Gas Con., 2011, 5: 788
[15] Hua Y, Barker R, Neville A.Comparison of corrosion behavior for X-65 carbon steel in supercritical CO2-saturated water and water-saturated/unsaturated supercritical CO2[J]. J. Supercrit. Fluid., 2015, 97: 224
[16] Choi Y S, Nesic S, Young D.Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments[J]. Environ. Sci. Technol., 2010, 44(23): 9233
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!