Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (3): 267-272    DOI: 10.11902/1005.4537.2015.050
Orginal Article Current Issue | Archive | Adv Search |
Microstructure and Electrochemical Corrosion Properties of Biomedical Extruded Mg-Zn-Gd Alloys
Xiaowei FENG1,2,Wenjun QI1(),Xiaohui LI1,Zhicheng LI2
1. Guangzhou Research Institute of Nonferrous Metals, Guangzhou 510650, China
2. College of Materials Science and Engineering, Central South University, Changsha 410083,China
Download:  HTML  PDF(4050KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and corrosion morphology of extruded alloys Mg-xZn-yGd (x=1~3, y=0~3) were observed by optical microscopy (OM), scanning electron microscopy (SEM). Results show that after extrusion the microstructure of the alloys is obviously refined and further refined by Gd addition, i.e. the average grain size decreases from (30±3) μm for Mg-3Zn to (10±2) μm for Mg-3Zn-3Gd. The dynamic recrystallization occurs during the extrusion, while the second phase particles tend to distribute as belts along the extrusion direction. Mg-xZn-yGd alloy is sensitive to pitting corrosion in the Hank's solution. Among others the corrosion of Mg-3Zn-2Gd is the fastest,while that of Mg-3Zn is the slowest. After solid solution treatment, the corrosion rate of Mg-3Zn-2Gd and Mg-3Zn-3Gd decreases from (0.605±0.025) and (0.352±0.021) mg/(cm2h) to (0.085±0.010) and (0.167±0.020) mg/(cm2h) respectively. With increasing Zn content the corrosion current density decreases and the high-frequency capacitance increases gradually; with the increase of Gd content, the corrosion current density and high-frequency capacitance of the alloys rise firstly and then reduce gradually. Mg-3Zn alloy exhibits aminimum corrosion current density (8.65×10-3 mA/cm2)and a maximum Faraday resistance Rt (3312 Ω).

Key words:  Mg-Zn-Gd alloy      microstructure      electrochemistry      corrosion     
Received:  10 April 2015     

Cite this article: 

Xiaowei FENG,Wenjun QI,Xiaohui LI,Zhicheng LI. Microstructure and Electrochemical Corrosion Properties of Biomedical Extruded Mg-Zn-Gd Alloys. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 267-272.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.050     OR     https://www.jcscp.org/EN/Y2016/V36/I3/267

Fig.1  OM graphs of extruded Mg-1Zn-1Gd (a), Mg-2Zn-1Gd (b), Mg-3Zn-1Gd (c), Mg-3Zn-2Gd (d), Mg-3Zn-3Gd (e) and Mg-3Zn (f) alloys
Fig.2  OM graphs of extruded Mg-3Zn-2Gd (a) and Mg-3Zn-3Gd (b) alloys after solution treatment (T4)
Fig.3  XRD spectra of extruded Mg-3Zn and Mg-3Zn-2Gd alloys
Fig.4  Corrsion rate curves of Mg-xZn-yGd alloys during immersion in Hank's solution
Fig.5  Corrsion rates of Mg-3Zn-yGd (y=2,3) alloys with T4 and T6 heat treatments during immersion in Hank's solution for 72 h
Fig.6  XRD spectra of corrosion products of Mg-3Zn-2Gd alloy after immersion in Hank's solution for 3 d
Fig.7  SEM images of Mg-3Zn (a), Mg-3Zn-1Gd (b) and Mg-3Zn-2Gd (c) alloys after immersion in Hank's solution for 3 d and then acid cleaning
Fig.8  Potentiodynamic polarization curves (a) and electrochemical impedance spectroscopies (b) of Mg-xZn-yGd alloys during corrosion in Hank's solution and equivalent circuit (c) for EIS
Alloy Ecorr / V Icorr / mAcm-2
Mg-3Zn-1Gd -1.442 1.088×10-2
Mg-3Zn-2Gd -1.6417 1.674×10-1
Mg-3Zn-3Gd -1.4093 5.857×10-2
Mg-2Zn-1Gd -1.4678 8.556×10-2
Mg-1Zn-1Gd -1.4243 1.451×10-1
Mg-3Zn -1.3015 8.65×10-3
Table 1  Fitting results of polarization curves ofMg-xZn-yGd alloys
[1] Staiger M P, Pietak A M, Huadmai J, et al.Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27: 1728
[2] Witte F.The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680
[3] Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557
[4] Wang J Y, Wicklund B H, Gustilo R B, et al.Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro[J]. Biomaterials, 1996, 17: 2233
[5] Li X, Qi W, Zheng K, et al.Enhanced strength and ductility of Mg-Gd-Y-Zr alloys by secondary extrusion[J]. J. Magnes. Alloy., 2013, 1: 54
[6] Yu H, Yan H, Chen J, et al.Effects of minor Gd addition on microstructures and mechanical properties of the high strain-rate rolled Mg-Zn-Zr alloys[J]. J. Alloy. Compd., 2014, 586: 757
[7] Srinivasan A, Huang Y, Mendis C L.Investigations on microstructures, mechanical and corrosion properties of Mg-Gd-Zn alloys[J]. Mater. Sci. Eng., 2014, A595: 224
[8] Hort N, Huang Y, Fechner D, et al.Magn esium alloys as implant materials: Principles of property design for Mg-RE alloys[J]. Acta Biomater., 2010, 6: 1714
[9] Zhong L Y.The effect of rare earth elements on microstructure and corrosion behavior of AZ91 magnesium alloys [D]. Hangzhou: Zhejiang University, 2008
[9] (钟丽英. 稀土元素对AZ91镁合金组织结构和腐蚀性为的影响[D]. 杭州: 浙江大学, 2008)
[10] Atrens A, Liu M, Abidin N.Corrosion mechanism applicable to biodegradable magnesium implants[J]. Mater. Sci. Eng., 2011, 176: 1609
[11] Zhang X.Study on microstructure, properties and corrosion behavior of Mg-RE binary magnesium alloys [D]. Beijing: General Research Institute for Nonferrous Metals, 2013
[11] (张新. Mg-RE基稀土镁合金组织、性能与腐蚀机理研究 [D]. 北京: 有色金属研究院, 2013)
[12] Atrens A, Song G L, Cao F, et al.Advances in Mg corrosion and research suggestions[J]. J. Magnes. Alloy., 2013, 1(3): 177
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!