Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (1): 38-42    DOI: 10.11902/1005.4537.2013.259
Current Issue | Archive | Adv Search |
Effect of pH on Pitting Corrosion Process of 304 Stainless Steel in 3.5%NaCl Solution
YE Chao1, DU Nan1(), TIAN Wenming2, ZHAO Qing1, ZHU Li3
1. Key Discipline Laboratory of National Defence of Light Alloy Processing Science and Technology Institute, Nanchang Hangkong University, Nanchang 330063, China
2. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
3. Department of AVIC Chengdu Manufacturing Engineering, Chengdu 610092, China
Download:  HTML  PDF(1275KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of pH values on pitting dynamics and morphology of single pits of 304 stainless steel in 3.5%NaCl solution was studied by means of potentiostatic polarization and 3-dimensional video microscope. The results showed that the pitting current, the growth rate of pit volume, the pit depth and pit mouth diameter of single pits increase with the decreasing pH in a range 1 to 14 by applied potential of 0.15 Vvs SCE. In solutions with the same pH, the growth rate of pit depth increases with time, while the growth rate of pit mouth diameter decreases with time. In solutions with different pH, the growth of single pit is controlled by the diffusion through corrosion products. There exists lacy cover on the wall of pit mouth, and the integrity of the lacy cover declines with the increase of pH.

Key words:  304 stainless steel      pH      pitting dynamics      corrosion morphology      diffusion controlled     
ZTFLH:  TG172  

Cite this article: 

YE Chao, DU Nan, TIAN Wenming, ZHAO Qing, ZHU Li. Effect of pH on Pitting Corrosion Process of 304 Stainless Steel in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 38-42.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.259     OR     https://www.jcscp.org/EN/Y2015/V35/I1/38

Fig.1  Curves of dissolution current and time for single pit formed on 304 stainless steel in 3.5%NaCl solution at different pH
pH Surface diameter
μm
Depth
μm
Base diameter
μm
Volume
μm3
1 145.59 193.95 110.62 1.56×106
4 158.14 234.65 105.48 2.46×106
7 127.13 132.24 91.31 6.72×105
10 76.18 50.37 50.29 9.19×104
14 91.47 91.56 55.64 2.78×105
Table 1  Parameters of single pit after polarization at different pH
Fig.2  Curves of pit volume vs time for single pit of 304 stainless steel in 3.5%NaCl solution at different pH
Fig.3  Curves of pit depth (a) and mouth diameter (b) vs time for single pit of 304 stainless steel in 3.5%NaCl solution at different pH
Fig.4  Curves of dissolution current density vs time for single pit of 304 stainless steel in 3.5%NaCl solution at different pH
Fig.5  Images of metal cover on the pit mouth for 304 stainless steel in 3.5%NaCl solution with pH=1 (a), pH=4 (b), pH=7 (c), pH=10 (d) and pH=14 (e)
[1] Rybalka K V, Shaldaev V S, Beketaeva L A, et al. Development of pitting corrosion of stainless steel 403 in sodium chloride solutions[J]. Russ. J. Electrochem., 2010, 46(2): 196
[2] Li L, Li X G, Dong C F, et al. Cellular automaton model for simulation of metastable pitting[J]. Corros. Eng. Sci. Technol., 2011, 46(4): 340
[3] Berthome′ G, Malki B, Baroux B. Pitting transients analysis of stainless steels at the open circuit potential[J]. Corros. Sci., 2006, 48: 2432
[4] Wang M F, Li X G, Du N, et al. Direct evidence of initial pitting corrosion[J]. Electrochem. Commun., 2008, 10(7): 1000
[5] Pujar M G, Anita T, Shaikh H, et al. Use of electrochemical noise (EN) technique to study the effect of sulfate and chloride ions on passivation and pitting porrosion behavior of 316 stainless steel[J].J. Mater. Eng. Perform., 2007, 16(4): 494
[6] Ernst P, Newman R C. Pit growth studies in stainless steel foils. II:Effect of temperature, chloride concentration and sulphate addition[J]. Corros. Sci., 2002, 44(5): 943
[7] Hong T, Nagumo M. The effect of chloride concentration on the early stages of pitting for type 304 stainless steel revealed by the ac impedance method[J]. Corros. Sci., 1997, 39(2): 285
 Pardo A, Otero E, Merino M C, et al. Influence of pH and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless steels[J]. Corrosion, 2000, 56(4): 411
[9] Gong X Z, Xiao J, Zuo Y, et al. Effect of pH value on metastable pitting behavior of stainless steel[J]. J. Univ. Chem. Technol. Beijing,2002, 29(4): 29
(龚小芝, 肖娟, 左禹等. 溶液pH值对不锈钢亚稳态孔蚀行为的影响[J]. 北京化工大学学报, 2002, 29(4): 29)
[10] Tang Z L. Kinetic analysis on pitting growth[J]. J. Chin. Soc. Corros. Prot., 1998, 18(4): 241
(唐子龙. 孔蚀发展过程动力学分析[J]. 中国腐蚀与防护学报, 1998, 18(4): 241)
[11] Sun D M, Jiang Y M, Li J, et al. The relaotionship between the rupture of pitting cover and stability transition on stainless steel[J]. J. Univ. Zhengzhou, 2009, 30(1): 70
(孙道明, 蒋益明, 李劲等. 不锈钢点蚀花边盖脱落与稳定生长[J]. 郑州大学学报, 2009, 30(1): 70)
[12] Liang C H, Gao Y. Influence of sensibilization heat treatment on corrosion resistance of 304 stainless steel[J]. Chem. Eng. Mach., 1995, 22(2): 87
(梁成浩, 高扬. 304不锈钢敏化热处理对耐蚀行的影响[J]. 化工机械, 1995, 22(2): 87)
[13] Popov Y A, Kovalchukov N A, Rybakov Y P. Role of the interaction of corrosion pittings in the dynamics of their evolution[J]. Russ. J. Phys. Chem., 2006, 80(9): 1504
[14] Ryan M P, William D E, Chater R J, et al. Why stainless steel corrodes[J]. Nature, 2002, 415(14): 770
[15] Ernst P, Laycock N J, Moayed M H, et al. The mechnism of lacy cover formation in pitting[J]. Corros. Sci., 1999, 39(6): 1133
[1] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[2] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[3] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[4] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[5] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[6] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[7] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[8] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[9] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[10] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[11] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[12] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[13] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[14] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[15] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
No Suggested Reading articles found!