|
|
螺纹钢中MnS夹杂物诱发的局部腐蚀行为 |
韩宇龙1,2, 李健3, 郭丽雅1,2( ), 杨边疆2, 陆恒昌1,2, 韦习成1,2, 董瀚1,2 |
1 上海大学材料科学与工程学院 上海 200444 2 上海大学(浙江)高端装备基础件材料研究院 嘉兴 314100 3 陕钢集团产业创新研究院有限公司 汉中 723000 |
|
Localized Corrosion Behavior Induced by MnS Inclusions in HRB400E Rebar Steel |
HAN Yulong1,2, LI Jian3, GUO Liya1,2( ), YANG Bianjiang2, LU Hengchang1,2, WEI Xicheng1,2, DONG Han1,2 |
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 2 Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314100, China 3 Shaanxi Steel Group lndustrial Innovation Research Institute Co., Ltd., Hanzhong 723000, China |
引用本文:
韩宇龙, 李健, 郭丽雅, 杨边疆, 陆恒昌, 韦习成, 董瀚. 螺纹钢中MnS夹杂物诱发的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1255-1262.
Yulong HAN,
Jian LI,
Liya GUO,
Bianjiang YANG,
Hengchang LU,
Xicheng WEI,
Han DONG.
Localized Corrosion Behavior Induced by MnS Inclusions in HRB400E Rebar Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1255-1262.
1 |
Bouzaffour K, Lescop B, Talbot P, et al. Development of an embedded UHF-RFID corrosion sensor for monitoring corrosion of steel in concrete [J]. IEEE Sens. J., 2021, 21: 12306
|
2 |
Yu Y C, Kang J, Feng L, et al. Pitting corrosion behavior and corrosion resistance of high strength seismic reinforcement rebar with trace rare earth [J]. J. Chin. Soc. Rare Earths, 2022, 40: 853
|
2 |
于彦冲, 康 健, 奉 亮 等. 稀土微合金化高强抗震钢筋点蚀行为及耐蚀性能研究 [J]. 中国稀土学报, 2022, 40: 853
|
3 |
Liu C, Li C, Che Z C, et al. Influence of cementite coarsening on the corrosion resistance of high strength low alloy steel [J]. npj Mater. Degrad., 2023, 7: 43
|
4 |
Ryan M P, Williams D E, Chater R J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
|
5 |
Liu C C, Zhang L F, Ren Y, et al. Review on effect of non-metallic inclusions on pitting corrosion resistance of stainless steel [J]. J. Iron Ste. Res., 2021, 33: 1040
|
5 |
刘城城, 张立峰, 任 英 等. 非金属夹杂物对不锈钢耐点蚀性能影响的综述 [J]. 钢铁研究学报, 2021, 33: 1040
doi: 10.13228/j.boyuan.issn1001-0963.20210078
|
6 |
Liu C, Chen T Q, Li X G. Research progress on initiation mechanism of local corrosion induced by inclusions in low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
|
6 |
刘 超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 746
|
7 |
Liu C, Yuan H, Li X D, et al. Initiation mechanism of localized corrosion induced by Al2O3-MnS composite inclusion in low-alloy structural steel [J]. Metals, 2022, 12: 587
|
8 |
Liu Q, Yang S F, Zhao M J, et al. Pitting corrosion of steel induced by Al2O3 inclusions [J]. Metals, 2017, 7: 347
|
9 |
Zhang X, Wei W Z, Cheng L, et al. Effects of niobium and rare earth elements on microstructure and initial marine corrosion behavior of low-alloy steels [J]. Appl. Surf. Sci., 2019, 475: 83
doi: 10.1016/j.apsusc.2018.12.243
|
10 |
Liu Y Q, Wang L J, Chou K. Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway [J]. J. Rare Earths, 2014, 32: 759
|
11 |
Li W, Li J Y, Gu J B, et al. Correlation between hyperfine structure of inclusion and localized corrosion mechanism of DSS2101 with Ce microalloying in simulated marine environment [J]. Vacuum, 2021, 191: 110361
|
12 |
Han Y L, Hao L, Wang J Q, et al. Effect of rare earth addition on corrosion sensitivity of GCr15 bearing steel in marine environment [J]. Mater. Lett., 2023, 333: 133693
|
13 |
Li G X, Wang L W, Wu H L, et al. Dissolution kinetics of the sulfide-oxide complex inclusion and resulting localized corrosion mechanism of X70 steel in deaerated acidic environment [J]. Corros. Sci., 2020, 174: 108815
|
14 |
Nan H. Effect of TiN inclusion on pitting of an ultra-pure ferritic stainless steel [J]. Corros. Prot., 2021, 42(9): 22
|
14 |
南 海. TiN夹杂物对超纯铁素体不锈钢点蚀的影响 [J]. 腐蚀与防护, 2021, 42(9): 22
|
15 |
Zhang X W, Zhao S L, Wang Z, et al. The pitting to uniform corrosion evolution process promoted by large inclusions in mooring chain steels [J]. Mater. Charact., 2021, 181: 111456
|
16 |
Zhang Y H, Liu J, Huang F, et al. Effect of composition and size of oxide inclusions on pitting initiation of 2205 duplex stainless steel [J]. Corros. Sci. Prot. Technol., 2018, 30: 105
|
16 |
张耀华, 刘 静, 黄 峰 等. 2205双相不锈钢中氧化物夹杂的成分和尺寸对点蚀萌生的影响 [J]. 腐蚀科学与防护技术, 2018, 30: 105
doi: 10.11903/1002.6495.2018.011
|
17 |
Park I J, Lee S M, Kang M, et al. Pitting corrosion behavior in advanced high strength steels [J]. J. Alloy. Compd., 2015, 619: 205
|
18 |
Yang S F, Zhao M J, Feng J, et al. Induced-pitting behaviors of MnS inclusions in steel [J]. High Temp. Mater. Process., 2018, 37: 1007
|
19 |
Shi W N, Yang S F, Dong A P, et al. Understanding the corrosion mechanism of spring steel induced by MnS inclusions with different sizes [J]. JOM, 2018, 70: 2513
|
20 |
Song D, Sun W, Jiang J Y, et al. Corrosion behavior of Cr micro-alloyed corrosion-resistant rebar in neutral Cl- -containing environment [J]. J. Iron Steel Res. Int., 2016, 23: 608
|
21 |
Peng Y Z, Gong F Y, Zhao Y X. Distribution of stray current induced corrosion of reinforced bars within concrete based on electric field analysis and experiment with transparent imitated concrete [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
|
21 |
彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究 [J]. 中国腐蚀与防护学报, 2022, 42: 813
doi: 10.11902/1005.4537.2021.265
|
22 |
Hu J Z, Cheng X Q, Li X G, et al. The coupled effect of temperature and carbonation on the corrosion of Rebars in the simulated concrete pore solutions [J]. J. Chem., 2015, 2015: 462605
|
23 |
Liu T, Li N N, Liu C, et al. Attempt to optimize the corrosion resistance of HRB400 steel rebar with Cr and RE [J]. Materials, 2022, 15: 8269
|
24 |
Wang C G, Ma R Y, Zhou Y T, et al. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel [J]. J. Mater. Sci. Technol., 2021, 93: 232
doi: 10.1016/j.jmst.2021.03.014
|
25 |
Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
|
26 |
Jiang B, Wang C, Song R G, et al. Effect of creep ageing on the corrosion behaviour of an Al-Cu-Li alloy [J]. Corros. Sci., 2022, 202: 110314
|
27 |
Shen K L, Jiang W C, Sun C, et al. Insight into microstructure, microhardness and corrosion performance of 2205 duplex stainless steel: Effect of plastic pre-strain [J]. Corros. Sci., 2023, 210: 110847
|
28 |
Peŝiĉka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels [J]. Mater. Sci. Eng., 2004, 387-389A: 176
|
29 |
Qin X X, Gu Y J, Zhang L C, et al. Continuum model and numerical method for dislocation structure and energy of grain boundaries [J]. Multiscale Model. Simul., 2022, 20: 323
|
30 |
Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490
|
31 |
Avci R, Davis B H, Wolfenden M L, et al. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media [J]. Corros. Sci., 2013, 76: 267
|
32 |
Brossia C S, Kelly R G. Occluded solution chemistry control and the role of alloy sulfur on the initiation of crevice corrosion in type 304ss [J]. Corros. Sci., 1998, 40: 1851
|
33 |
Wei W Z, Wu KM, Liu J, et al. Initiation and propagation of localized corrosion induced by (Zr, Ti, Al)-O x inclusions in low-alloy steels in marine environment [J]. J. Iron Steel Res. Int., 2021, 28: 453
|
34 |
Wan Y, Gao S, Zhang X J, et al. Effect of manganese sulfide inclusion morphology on the corrosion resistance and pitting corrosion behavior of free-cutting austenitic stainless steel [J]. J. Mater. Eng. Perform., 2024, 33: 336
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|