|
|
镁铝合金在模拟低温条件下大气腐蚀行为研究 |
吴洋1, 安易强2, 王力伟1, 崔中雨2( ) |
1.青岛大学机电工程学院 青岛 266071 2.中国海洋大学材料科学与工程学院 青岛 266404 |
|
Atmospheric Corrosion Behavior of Mg-alloys AZ31B and AZ91D in Simulated Low Temperature Environments |
WU Yang1, AN Yiqiang2, WANG Liwei1, CUI Zhongyu2( ) |
1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China 2. School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China |
引用本文:
吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
Yang WU,
Yiqiang AN,
Liwei WANG,
Zhongyu CUI.
Atmospheric Corrosion Behavior of Mg-alloys AZ31B and AZ91D in Simulated Low Temperature Environments[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1001-1010.
[1] |
Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
|
[1] |
刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
|
[2] |
Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 463
|
[2] |
郏义征, 赵明君, 程世婧 等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 463
doi: 10.11902/1005.4537.2019.050
|
[3] |
Yu H R, Zhang W L, Cui Z Y. Difference in corrosion behavior of four Mg-alloys in Cl--NH4 +-NO3 - containing solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 553
|
[3] |
于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4 +-NO3 -溶液体系中的腐蚀行为差异研究 [J]. 中国腐蚀与防护学报, 2020, 40: 553
doi: 10.11902/1005.4537.2019.250
|
[4] |
Merino M, Pardo A, Arrabal R, et al. Influence of chloride ion concentration and temperature on the corrosion of Mg–Al alloys in salt fog [J]. Corros. Sci., 2010, 52: 1696
|
[5] |
Lebozec N, Jonsson M, Thierry D. Atmospheric corrosion of magnesium alloys: influence of temperature, relative humidity, and chloride deposition [J]. Corrosion, 2004, 60: 356
|
[6] |
Lindström R, Svensson J E, Johansson L G. The atmospheric corrosion of zinc in the presence of NaCl the influence of carbon dioxide and temperature [J]. J. Electrochem. Soc., 2000, 147: 1751
|
[7] |
Blücher D B, Svensson J E, Johansson L G. The NaCl-induced atmospheric corrosion of aluminum: the influence of carbon dioxide and temperature [J]. J. Electrochem. Soc., 2003, 150: B93
|
[8] |
Chen J, Wang J Q, Han E H, et al. Effect of temperature on initial corrosion of AZ91 magnesium alloy under cyclic wet–dry conditions [J]. Corros. Eng. Sci. Technol., 2011, 46: 277
|
[9] |
Esmaily M, Blücher D B, Svensson J E, et al. New insights into the corrosion of magnesium alloys—The role of aluminum [J]. Scr. Mater., 2016, 115: 91
|
[10] |
Liao J S, Hotta M, Motoda S I, et al. Atmospheric corrosion of two field-exposed AZ31B magnesium alloys with different grain size [J]. Corros. Sci., 2013, 71: 53
|
[11] |
Shi X Z, Cui Z Y, Li J, et al. Atmospheric corrosion of AZ31B magnesium alloy in the Antarctic low-temperature environment [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 1421
|
[12] |
Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
|
[12] |
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
|
[13] |
Cui Z Y, Li X G, Xiao K, et al. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment [J]. Corros. Sci., 2013, 76: 243
|
[14] |
Man C, Dong C F, Wang L, et al. Long-term corrosion kinetics and mechanism of magnesium alloy AZ31 exposed to a dry tropical desert environment [J]. Corros. Sci., 2020, 163: 108274
|
[15] |
Lindgren M, Panas I. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting [J]. Beilstein J. Nanotechnol., 2014, 5: 195
|
[16] |
Arrabal R, Matykina E, Pardo A, et al. Corrosion behaviour of AZ91D and AM50 magnesium alloys with Nd and Gd additions in humid environments [J]. Corros. Sci., 2012, 55: 351
|
[17] |
Jönsson M, Persson D, Thierry D. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D [J]. Corros. Sci., 2007, 49: 1540
|
[18] |
Luo C, Wu X, Song H Q, et al. Analysis of application requirements and research directions of magnesium alloys for aircraft engines serving in marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 787
|
[18] |
骆 晨, 吴 雄, 宋汉强 等. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析 [J]. 中国腐蚀与防护学报, 2023, 43: 787
|
[19] |
Li S X, Khan H A, Hihara L H, et al. Corrosion behavior of friction stir blind riveted Al/CFRP and Mg/CFRP joints exposed to a marine environment [J]. Corros. Sci., 2018, 132: 300
|
[20] |
Arthanari S, Ananth A, Boo J H, et al. Protective performance of plasma-enhanced chemical vapor-deposited ethyl cyclohexane coating on magnesium alloys [J]. J. Mater. Eng. Perform., 2019, 28: 1360
|
[21] |
Feliu S, Llorente I. Corrosion product layers on magnesium alloys AZ31 and AZ61: surface chemistry and protective ability [J]. Appl. Surf. Sci., 2015, 347: 736
|
[22] |
Nordlien J H, Ono S, Masuko N, et al. A TEM investigation of naturally formed oxide films on pure magnesium [J]. Corros. Sci., 1997, 39: 1397
|
[23] |
Cabrera N, Mott N F. Theory of the oxidation of metals [J]. Rep. Prog. Phys., 1949, 12: 163
|
[24] |
Song G L, Atrens A. Corrosion mechanisms of magnesium alloys [J]. Adv. Eng. Mater., 1999, 1: 11
|
[25] |
Frankel G S. Pitting corrosion of metals: a review of the critical factors [J]. J. Electrochem. Soc., 1998, 145: 2186
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|