Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 1001-1010     CSTR: 32134.14.1005.4537.2024.019      DOI: 10.11902/1005.4537.2024.019
  轻质合金腐蚀与防护专栏 本期目录 | 过刊浏览 |
镁铝合金在模拟低温条件下大气腐蚀行为研究
吴洋1, 安易强2, 王力伟1, 崔中雨2()
1.青岛大学机电工程学院 青岛 266071
2.中国海洋大学材料科学与工程学院 青岛 266404
Atmospheric Corrosion Behavior of Mg-alloys AZ31B and AZ91D in Simulated Low Temperature Environments
WU Yang1, AN Yiqiang2, WANG Liwei1, CUI Zhongyu2()
1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
2. School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
引用本文:

吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
Yang WU, Yiqiang AN, Liwei WANG, Zhongyu CUI. Atmospheric Corrosion Behavior of Mg-alloys AZ31B and AZ91D in Simulated Low Temperature Environments[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1001-1010.

全文: PDF(16426 KB)   HTML
摘要: 

采用室内模拟方法研究了AZ31B和AZ91D镁合金在低温交变条件下的大气腐蚀行为。采用失重法得到两种镁合金的腐蚀速率与温度呈正相关,形貌分析表明在低温条件下两种镁合金均发生了明显的局部腐蚀。结合腐蚀速率和形貌观察,相同温度条件下AZ31B镁合金比AZ91D镁合金腐蚀严重,但AZ91D镁合金具有十分明显的点蚀特征,表现为AZ91D镁合金的平均点蚀密度和深度高于AZ31B镁合金,但其平均点蚀体积相对较小。红外光谱和能谱分析表明,在15~25℃温度循环时,Mg(OH)2、MgO和碳酸盐是腐蚀产物的主要成分;而在低温循环(-5~-15℃和-5~-25℃)时,腐蚀产物中MgO的含量较高,EDS能谱检测到AZ91D镁合金点蚀严重的区域存在Al和Cl,Cl-对氧化膜的破坏作用对AZ91D镁合金的点蚀有重要影响。

关键词 镁合金局部腐蚀腐蚀形貌腐蚀产物低温腐蚀    
Abstract

The atmospheric corrosion behavior of Mg-alloys AZ31B and AZ91D at alternating low temperatures was investigated via laboratory simulation i.e. a high/low temperature dry-humid alternating test chamber. The corrosion rate of the two alloys was positively correlated with temperature as the results acquired by the mass loss measurement. The morphology analysis showed that the two alloys exhibited obvious localized corrosion in the low temperature environment. Combined with corrosion rate and morphology observation (SEM, CLSM), it was found that AZ31B Mg-alloy was more seriously corroded than AZ91D Mg-alloy at the same temperature, but AZ91D Mg-alloy showed obvious pitting characteristics. The average pitting density and depth of AZ91D Mg-alloy were larger than that of AZ31B Mg-alloy, but the corresponding average pitting volume was smaller. FTIR and EDS analysis showed that Mg(OH)2, MgO and carbonates were the main components of the corrosion products formed at 15-25oC, while the content of MgOin the corrosion products was higher at lower alternating temperatures (from -5oC to -15°C and -5oC to -25°C). EDS results suggested that Aland Cl were present in the area where AZ91D Mg-alloy pitting was serious. It was considered that the destruction of the oxide scale by Cl- had an important influence on the pitting corrosion of AZ91D Mg-alloy.

Key wordsMg-alloy    location corrosion    corrosion morphology    corrosion product    low temperature corrosion
收稿日期: 2024-01-12      32134.14.1005.4537.2024.019
ZTFLH:  TG172  
基金资助:山东省优秀青年科学基金(ZR2022YQ44);中央高校基本科研业务费(202241012);中央高校基本科研业务费(202262011);国家自然科学基金(52201098)
通讯作者: 崔中雨,E-mail:cuizhongyu@ouc.edu.cn,研究方向为金属材料腐蚀与防护
Corresponding author: CUI Zhongyu, E-mail: cuizhongyu@ouc.edu.cn
作者简介: 吴 洋,男,1997年生,硕士生
图1  冻融实验过程中实验箱内温度和湿度变化过程
图2  AZ31B和AZ91D镁合金在不同交变温度条件下的失重腐蚀速率
图3  AZ31B镁合金在不同交变温度条件下的宏观腐蚀形貌
图4  AZ91D镁合金在不同交变温度条件下的宏观腐蚀形貌
图5  AZ31B镁合金在不同交变温度条件下的SEM形貌
图6  AZ91D镁合金在不同交变温度条件下的SEM形貌
图7  AZ31B镁合金在不同交变温度条件下的CLSM形貌及点蚀统计分析
图8  AZ91D镁合金在不同交变温度条件下的CLSM形貌及点蚀统计分析
图9  15~25℃交变温度条件下两种镁合金腐蚀产物的FTIR结果
图10  AZ31B镁合金在不同交变温度条件下的EDS分析区域
ElementCOMgClNaAlAu
3.0439.8541.22---15.90
16.6828.7817.736.13--30.68
7.7125.7423.10---43.44
78.9711.982.17---6.89
3.0337.9630.3417.050.212.548.87
6.4942.5232.277.40--11.31
7.0743.8030.497.52-0.4010.71
表1  AZ31B镁合金不同条件下腐蚀产物EDS分析结果 (atomic fraction / %)
图11  AZ91D镁合金在不同交变温度条件下的EDS分析区域
ElementCOMgClNaAlAu
14.4913.7211.08-0.44-60.27
5.0613.6713.340.35-0.9166.67
3.9134.9826.5613.25-6.9014.41
3.1122.2027.3926.46-0.8420.00
2.0938.6940.855.90-3.858.61
8.6247.5026.984.62-3.688.60
7.4940.8939.464.42-0.906.86
10.7142.6527.1313.16-1.205.14
表2  AZ91D镁合金不同条件下腐蚀产物EDS分析结果 (atomic fraction / %)
[1] Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
[1] 刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
[2] Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 463
[2] 郏义征, 赵明君, 程世婧 等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 463
doi: 10.11902/1005.4537.2019.050
[3] Yu H R, Zhang W L, Cui Z Y. Difference in corrosion behavior of four Mg-alloys in Cl--NH4 +-NO3 - containing solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 553
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4 +-NO3 -溶液体系中的腐蚀行为差异研究 [J]. 中国腐蚀与防护学报, 2020, 40: 553
doi: 10.11902/1005.4537.2019.250
[4] Merino M, Pardo A, Arrabal R, et al. Influence of chloride ion concentration and temperature on the corrosion of Mg–Al alloys in salt fog [J]. Corros. Sci., 2010, 52: 1696
[5] Lebozec N, Jonsson M, Thierry D. Atmospheric corrosion of magnesium alloys: influence of temperature, relative humidity, and chloride deposition [J]. Corrosion, 2004, 60: 356
[6] Lindström R, Svensson J E, Johansson L G. The atmospheric corrosion of zinc in the presence of NaCl the influence of carbon dioxide and temperature [J]. J. Electrochem. Soc., 2000, 147: 1751
[7] Blücher D B, Svensson J E, Johansson L G. The NaCl-induced atmospheric corrosion of aluminum: the influence of carbon dioxide and temperature [J]. J. Electrochem. Soc., 2003, 150: B93
[8] Chen J, Wang J Q, Han E H, et al. Effect of temperature on initial corrosion of AZ91 magnesium alloy under cyclic wet–dry conditions [J]. Corros. Eng. Sci. Technol., 2011, 46: 277
[9] Esmaily M, Blücher D B, Svensson J E, et al. New insights into the corrosion of magnesium alloys—The role of aluminum [J]. Scr. Mater., 2016, 115: 91
[10] Liao J S, Hotta M, Motoda S I, et al. Atmospheric corrosion of two field-exposed AZ31B magnesium alloys with different grain size [J]. Corros. Sci., 2013, 71: 53
[11] Shi X Z, Cui Z Y, Li J, et al. Atmospheric corrosion of AZ31B magnesium alloy in the Antarctic low-temperature environment [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 1421
[12] Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
[12] 崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
[13] Cui Z Y, Li X G, Xiao K, et al. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment [J]. Corros. Sci., 2013, 76: 243
[14] Man C, Dong C F, Wang L, et al. Long-term corrosion kinetics and mechanism of magnesium alloy AZ31 exposed to a dry tropical desert environment [J]. Corros. Sci., 2020, 163: 108274
[15] Lindgren M, Panas I. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting [J]. Beilstein J. Nanotechnol., 2014, 5: 195
[16] Arrabal R, Matykina E, Pardo A, et al. Corrosion behaviour of AZ91D and AM50 magnesium alloys with Nd and Gd additions in humid environments [J]. Corros. Sci., 2012, 55: 351
[17] Jönsson M, Persson D, Thierry D. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D [J]. Corros. Sci., 2007, 49: 1540
[18] Luo C, Wu X, Song H Q, et al. Analysis of application requirements and research directions of magnesium alloys for aircraft engines serving in marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 787
[18] 骆 晨, 吴 雄, 宋汉强 等. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析 [J]. 中国腐蚀与防护学报, 2023, 43: 787
[19] Li S X, Khan H A, Hihara L H, et al. Corrosion behavior of friction stir blind riveted Al/CFRP and Mg/CFRP joints exposed to a marine environment [J]. Corros. Sci., 2018, 132: 300
[20] Arthanari S, Ananth A, Boo J H, et al. Protective performance of plasma-enhanced chemical vapor-deposited ethyl cyclohexane coating on magnesium alloys [J]. J. Mater. Eng. Perform., 2019, 28: 1360
[21] Feliu S, Llorente I. Corrosion product layers on magnesium alloys AZ31 and AZ61: surface chemistry and protective ability [J]. Appl. Surf. Sci., 2015, 347: 736
[22] Nordlien J H, Ono S, Masuko N, et al. A TEM investigation of naturally formed oxide films on pure magnesium [J]. Corros. Sci., 1997, 39: 1397
[23] Cabrera N, Mott N F. Theory of the oxidation of metals [J]. Rep. Prog. Phys., 1949, 12: 163
[24] Song G L, Atrens A. Corrosion mechanisms of magnesium alloys [J]. Adv. Eng. Mater., 1999, 1: 11
[25] Frankel G S. Pitting corrosion of metals: a review of the critical factors [J]. J. Electrochem. Soc., 1998, 145: 2186
[1] 杜广, 芦国强, 邓龙辉, 蒋佳宁, 曹学强. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[2] 田梦真, 王勇, 李涛, 汪川, 郭泉忠, 郭建喜. 电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[3] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[4] 黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[5] 张运军, 蒋有伟, 张忠义, 吕乃欣, 陈君伟, 连国锋. 3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[6] 司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[7] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[8] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[9] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[10] 冷文俊, 石西召, 辛永磊, 杨延格, 王利, 崔中雨, 侯健. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[11] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[12] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[13] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[14] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[15] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.