Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 47-54     CSTR: 32134.14.1005.4537.2022.162      DOI: 10.11902/1005.4537.2022.162
  研究报告 本期目录 | 过刊浏览 |
5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为
毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海(), 胡文彬
天津大学材料科学与工程学院 天津 300350
Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone
MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai(), HU Wenbin
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
全文: PDF(8785 KB)   HTML
摘要: 

搭建了模拟海洋浪花飞溅腐蚀测试装置,采用电化学阻抗谱 (EIS) 技术和形貌分析方法研究了5083铝合金在模拟浪溅区的局部腐蚀行为,并比较了其与全浸区腐蚀行为的差异性。实验结果表明:浪溅区由于冲刷作用腐蚀类型较为复杂,呈现孔蚀、晶间腐蚀与剥落腐蚀等多种局部腐蚀形态,且表面覆盖有大量腐蚀产物,局部腐蚀深度约40~80 μm。全浸区仅存在分散分布的小蚀坑,深度约5 μm,且多数起源于夹杂物处。夹杂物作为阴极相,附近的铝合金基体为阳极区发生溶解。浪花飞溅区蚀坑形状与水流方向有关,蚀坑下边缘在水流剪切力与腐蚀的共同作用下发生了层状剥落,导致蚀坑深度变化较缓,呈台阶状。EIS测试结果表明,浪溅区的极化电阻值约为全浸区的20%~50%,而有效电容值约为全浸区的2倍,表明浪溅区的腐蚀速度远大于全浸区。

关键词 5083铝合金浪花飞溅区全浸区局部腐蚀电化学阻抗谱    
Abstract

Besides seawater and marine atmosphere, the service environment of marine equipment such as ships and amphibious aircraft also involves wave splashing. In this work, a corrosion platform in simulated splash zone is constructed, which consists of a simulated splash device and an electrochemical sensor. The localized corrosion of 5083 Al-alloy in simulated splash zone is investigated by using open circuit potential (OCP) measurement, electrochemical impedance spectroscope (EIS) combined with morphology analyses. Experimental results indicate that, compared with the corrosion in the full immersion zone, the alloy suffer severe pitting corrosion, intergranular corrosion and exfoliation corrosion, with a corrosion depth about 40~80 μm. The shape of the pits in the splash zone is closely related to the water flow direction. Under the joint action of the shear force of water flow and corrosion, lamellar exfoliation occurs at the bottom edge of the pit, resulting in a slow change in the depth of the pit with terraced inner walls. The high oxygen content and high seawater splash rate are the main cause of the high localized corrosion susceptibility in the splash zone. There are only scattered small pits of about 5 μm in depth, in the full immersion zone, and most of them originate from inclusions, whilst the inclusion serves as the cathode phase and the surrounding aluminum alloy matrix behaves as anode and is dissolved. EIS fitting results by using the Measurement Model show that the polarization resistance of the 5083 Al-alloy in the splash zone is 20%-50% of that in the full immersion zone, while the effective capacitance is about twice as large as that of the full immersion zone, indicating that the corrosion rate of the splash zone is higher than that of the full immersion zone. A larger effective capacitance in the splash zone corresponds to a coarser surface on which the corrosion products are accumulated.

Key words5083 Al-alloy    splash zone    full immersion zone    localized corrosion    electrochemical impedance spectroscopy
收稿日期: 2022-05-24      32134.14.1005.4537.2022.162
ZTFLH:  O646  
基金资助:国家自然科学基金(52171077)
作者简介: 毛英畅,男,2000年生,硕士生

引用本文:

毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
Yingchang MAO, Yu ZHU, Shengkai SUN, Zhenbo QIN, Da-Hai XIA, Wenbin HU. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 47-54.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.162      或      https://www.jcscp.org/CN/Y2023/V43/I1/47

图1  模拟浪花飞溅实验装置与5083铝合金试样表面分区示意图
图2  电化学阻抗谱传感器示意图
图3  5083铝合金大气区、浪花飞溅区和全浸区宏观腐蚀形貌随时间变化
图4  5083铝合金浪花飞溅区腐蚀68 d后的微观形貌
图5  5083铝合金浪花飞溅区蚀坑3D超景深显微表征结果
图6  5083铝合金全浸区腐蚀68 d后的微观形貌
图7  5083铝合金表面不同区域的点蚀深度
图8  开路电位随时间的变化
图9  5083铝合金浪花飞溅区暴露不同时间后的阻抗谱Nyquist图
图10  采用Measurement Model拟合得到的极化电阻和有效电容
1 Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 2115
1 邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29: 2115
2 Huang Y B, Zhou K K, Ba G Z, et al. The corrosion status of amphibious vehicles along the coast and integrated corrosion control technology [J]. Acta Armamentar., 2016, 37: 1291
2 黄燕滨, 周科可, 巴国召 等. 沿海两栖车辆腐蚀现状及腐蚀综合控制技术 [J]. 兵工学报, 2016, 37: 1291
doi: 10.3969/j.issn.1000-1093.2016.07.018
3 Jiang W, Wang J E. Analysis of choosing aluminum on mainstructure of amphibious aircraft [J]. Civil Aircraft Des. Res., 2015, (3): 60
3 江武, 王金娥. 某型水陆两栖飞机主结构铝合金材料选用分析 [J]. 民用飞机设计与研究, 2015, (3): 60
4 Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
4 刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
5 Sun S K, Sun Z H, Tang Z H, et al. Corrosion control and protection technology of carrier-borne aircraft [J]. Equip. Environ. Eng., 2017, 14(3): 18
5 孙盛坤, 孙志华, 汤智慧 等. 舰载飞机腐蚀控制与防护技术 [J]. 装备环境工程, 2017, 14(3): 18
6 Zhang X, Lin M Y, Yang G H, et al. Effect of Er on corrosion behavior of marine engineering 5052 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 686
6 张欣, 林木烟, 杨光恒 等. Er对海工5052铝合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 686
7 Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
7 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 507
8 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
8 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
9 Weng S, Yu J, Zhao L H, et al. Effect of corrosion damage on fatigue behavior of AA7075-T651 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 486
9 翁硕, 俞俊, 赵礼辉 等. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 486
10 Peng W S, Zhang P H, Li K W, et al. Corrosion behavior of typical stainless steels in marine environment of island in the South China Sea [J]. Equip. Environ. Eng., 2021, 18(11): 35
10 彭文山, 张彭辉, 李开伟 等. 南海岛礁海洋环境中典型不锈钢浪花飞溅区腐蚀规律 [J]. 装备环境工程, 2021, 18(11): 35
11 Liu W, Wang J. Environmental impact of material corrosion research progress in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 504
11 刘薇, 王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展 [J]. 中国腐蚀与防护学报, 2010, 30: 504
12 Zhao Y, Cao J Y, Fang Z G, et al. Corrosion behavior of A517Gr. Q marine steel in simulated corrosive condition of marine splashing zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 921
12 赵伊, 曹京宜, 方志刚 等. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 921
13 Huang G Q. Corrosion of aluminium alloys in marine environment (Ⅲ)—A summary of 16 years exposure testing in splash zone [J]. Corros. Prot., 2003, 24: 47
13 黄桂桥. 铝合金在海洋环境中的腐蚀研究 (Ⅲ)—海水飞溅区16年暴露试验总结 [J]. 腐蚀与防护, 2003, 24: 47
14 Huang G Q. Corrosion of aluminium alloys in marine environment (Ⅱ)—A summary of 16 years exposure testing in seawater full immersion zone [J]. Corros. Prot., 2002, 23: 47
14 黄桂桥. 铝合金在海洋环境中的腐蚀研究 (Ⅱ)—海水全浸区16年暴露试验总结 [J]. 腐蚀与防护, 2002, 23: 47
15 Huang G Q. Corrosion of alumimium alloys in marine environments (Ⅰ)—A summary of 16 year exposure testing in seawater tide zone [J]. Corros. Prot., 2002, 23: 18
15 黄桂桥. 铝合金在海洋环境中的腐蚀研究 (Ⅰ)—海水潮汐区16年暴露试验总结 [J]. 腐蚀与防护, 2002, 23: 18
16 Liang M X, Melchers R, Chaves I. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones [J]. Corros. Sci., 2018, 140: 286
doi: 10.1016/j.corsci.2018.05.036
17 Chang A L, Song S Z. A preliminary on corrosion monitoring and detecting of metal structure in simulated sea splash zone [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 247
17 常安乐, 宋诗哲. 模拟海洋环境浪花飞溅区的金属构筑物腐蚀监检测 [J]. 中国腐蚀与防护学报, 2012, 32: 247
18 Xia D-H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2022, DOI: 10.11900/0412.1961.2022.00196
18 夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水水气界面作用下的局部腐蚀机制 [J]. 金属学报, 2022, DOI: 10.11900/0412.1961.2022.00196
19 Xia D H, Mao Y C, Zhu Y, et al. A novel approach used to study the corrosion susceptibility of metallic materials at a dynamic seawater/air interface [J]. Corros. Commun., 2022, 6: 62
doi: 10.1016/j.corcom.2022.03.001
20 Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements [J]. Electrochim. Acta, 2020, 354: 136747
doi: 10.1016/j.electacta.2020.136747
21 Chen Y M, Nguyen A S, Orazem M E, et al. Identification of resistivity distributions in dielectric layers by measurement model analysis of impedance spectroscopy [J]. Electrochim. Acta, 2016, 219: 312
doi: 10.1016/j.electacta.2016.09.136
22 Tan L, Allen T R. Effect of thermomechanical treatment on the corrosion of AA5083 [J]. Corros. Sci., 2010, 52: 548
doi: 10.1016/j.corsci.2009.10.013
23 Park J O, Paik C H, Huang Y H, et al. Influence of Fe-Rich intermetallic inclusions on pit initiation on aluminum alloys in aerated NaCl [J]. J. Electrochem. Soc., 1999, 146: 517
doi: 10.1149/1.1391637
24 Nişancioğlu K. Electrochemical behavior of aluminum-base intermetallics containing iron [J]. J. Electrochem. Soc., 1990, 137: 69
doi: 10.1149/1.2086441
25 Ji Y Y, Xu Y Z, Zhang B B, et al. Review of micro-scale and atomic-scale corrosion mechanisms of second phases in aluminum alloys [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3205
doi: 10.1016/S1003-6326(21)65727-8
[1] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[3] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[4] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[5] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[6] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[7] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[8] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[9] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[10] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[11] 黄家和, 袁曦, 陈文, 闫文静, 金正宇, 柳海宪, 刘宏芳, 刘宏伟. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[12] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[13] 庞涛, 刘静, 黄峰, 李闯, 赵国知, 黄先球, 郑建国, 程鹏. 武汉地铁钢轨在典型隧道环境中的腐蚀现状分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 798-804.
[14] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[15] 赵海洋, 高多龙, 张童, 吕由, 张宇鹏, 张欣欣, 石鑫, 魏晓静, 刘冬梅, 董泽华. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.