Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1263-1273     CSTR: 32134.14.1005.4537.2023.373      DOI: 10.11902/1005.4537.2023.373
  研究报告 本期目录 | 过刊浏览 |
四种飞机起落架用钢在模拟海水中的腐蚀行为研究
赵连红(), 王英芹, 刘元海, 何卫平, 王浩伟
中国特种飞行器研究所 结构腐蚀防护与控制航空科技重点实验室 荆门 448035
Corrosion Behavior of Four Steels for Landing Gear of Amphibious Aircraft in Simulated Seawater
ZHAO Lianhong(), WANG Yingqin, LIU Yuanhai, HE Weiping, WANG Haowei
The Key Aeronautic Scientific & Technologic Laboratory of Structure Corrosion Protection and Control, China Special Vehicle Research Institute, Jingmen 448035, China
引用本文:

赵连红, 王英芹, 刘元海, 何卫平, 王浩伟. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
Lianhong ZHAO, Yingqin WANG, Yuanhai LIU, Weiping HE, Haowei WANG. Corrosion Behavior of Four Steels for Landing Gear of Amphibious Aircraft in Simulated Seawater[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1263-1273.

全文: PDF(17542 KB)   HTML
摘要: 

采用模拟海水全浸区的人工海水浸泡试验,结合电化学阻抗谱(EIS)测试、动电位极化曲线(PDP)测试、腐蚀产物及表面腐蚀形貌观察、表面三维轮廓及腐蚀产物分析,研究了4种水陆两栖飞机起落架用钢在人工海水溶液中的腐蚀行为。另外,通过腐蚀疲劳试验研究了预腐蚀对4种钢腐蚀疲劳性能的影响。结果表明:4种钢的电化学行为相似,阳极曲线表现出活性溶解特征,阴极过程以氧还原反应为主。失重法计算得出的腐蚀速率大小顺序为:30CrMnSiNi2A > 300M > 30CrMnSiA > A100。腐蚀产物主要由α-FeOOH、γ-FeOOH、α-Fe2O3和Fe3O4组成,腐蚀呈现均匀腐蚀的特征。预腐蚀使30CrMnSiA、30CrMnSiNi2A和300M钢的疲劳性能劣化而对A100钢的影响较小。A100钢相较于其余3种钢具有更高的耐蚀性,原因主要是其合金成分中较多的Co、Ni、Cr使腐蚀产物具有更好的保护性。

关键词 起落架用钢人工海水腐蚀产物电化学行为腐蚀疲劳    
Abstract

The corrosion behavior of four steels 30CrMnSiA, 30CrMnSiNi2A, 300M and A100 for amphibious aircraft landing gear in an artificial seawater was studied through immersion testing, electrochemical methods, microscopic morphology, three-dimensional morphology observation, and corrosion product characterization. In addition, the effect of pre-corrosion on the corrosion fatigue performance of the four steels was also investigated. The results show that the electrochemical behavior of the four steels is similar: i.e. the anodic curve exhibits active dissolution characteristics, and the cathodic process is dominated by oxygen reduction reaction. The corrosion rate of the four steels may be ranked in the following order: 30CrMnSiNi2A > 300M > 30CrMnSiA > A100. Their corrosion products are consisted mainly of α-FeOOH, γ-FeOOH, α-Fe2O3, and Fe3O4. The four steels show uniform corrosion characteristics in artificial seawater environment. After a pre-corrosion treatment, the fatigue property of the steels 30CrMnSiA, 30CrMnSiNi2A and 300M may be deteriorated, but A100 steel is suffered from little effect. The A100 steel presents better seawater corrosion resistance than the other three, mainly because its much higher Co, Ni and Cr content, so that results in corrosion products of better protection performance.

Key wordssteels for landing gear    artificial seawater    corrosion product    electrochemical behavior    corrosion fatigue
收稿日期: 2023-11-23      32134.14.1005.4537.2023.373
ZTFLH:  TM207  
通讯作者: 赵连红,E-mail: zhaolianhongmail@163.com,研究方向为材料腐蚀与防护
Corresponding author: ZHAO Lianhong, E-mail: zhaolianhongmail@163.com
作者简介: 赵连红,男,1988年生,硕士,高级工程师
MaterialCCrMnNiSiMoVFe
30CrMnSiNi2A steel0.27-0.340.90-1.201.00-1.301.40-1.800.90-1.20--Bal.
30CrMnSiA steel0.28-0.340.80-1.100.80-1.10≤0.0300.90-1.20--Bal.
300M steel0.41-0.460.65-0.950.65-0.901.60-2.001.45-1.800.30-0.400.05-0.10Bal.
A100 steel0.21-0.272.50-3.30≤0.1011.0-12.0≤0.101.00-1.30(Co)13.3-13.5Bal.
表1  4种超高强度钢的化学成分
图1  30CrMnSiA、30CrMnSiNi2A、300M和A100钢金相组织的SEM图和光学显微镜图
图2  腐蚀疲劳试样示意图
图3  4种钢在人工海水中的电化学测试结果
MaterialEcorr / VSCEIcorr / μA·cm-2
30CrMnSiA steel-0.7624150.330
30CrMnSiNi2A steel-0.715225.967
300M steel-0.690021.457
A100 steel-0.51028.554
表2  动电位极化曲线拟合得到的电化学参数
图4  30CrMnSiA、30CrMnSiNi2A、300M和A100钢浸泡28 d后的宏观形貌
Material

Rs

Ω·cm2

CPEdl

Ω-1·cm-2·s-n

n1

Rct

Ω·cm2

CPEf

Ω-1·cm-2·s-n

n2

Rf

Ω·cm2

Rp

Ω·cm2

Model
30CrMnSiA steel5.93.19 × 10-40.8230.02.06 × 10-30.4794.51024.5B
30CrMnSiNi2A steel6.21.72 × 10-30.6704.85.91 × 10-40.8377.71082.5B
300M steel8.17.61 × 10-40.7733.3---733.3A
A100 steel7.32.493 × 10-40.87974---7974A
表3  电化学阻抗谱拟合的电化学参数
图5  4 种钢浸泡28 d后的腐蚀速率
图6  30CrMnSiA、30CrMnSiNi2A、300M和A100钢浸泡28 d后表面腐蚀产物的XRD谱
图7  30CrMnSiA、30CrMnSiNi2A、300M和A100钢浸泡28 d后的腐蚀产物形貌和去除腐蚀产物腐蚀表面形貌及三维轮廓图
图8  30CrMnSiA、30CrMnSiNi2A、300M和A100钢在人工海水中浸泡28 d后的截面形貌及元素面扫图
MaterialCOFeCaClSiCrMnNiCo
30CrMnSiA steel60.820.614.43.80.10.3----
30CrMnSiNi2A steel54.515.025.73.20.10.60.10.8--
300M steel59.817.117.74.00.10.50.5(Mg)-0.3-
A100 steel54.516.616.16.0-0.3(Na)0.7-2.13.3
表4  4种钢的横截面EDS结果中的元素含量
图9  4种钢预腐蚀28 d后的腐蚀疲劳断口形貌
图10  4种钢预腐蚀前后的疲劳寿命
1 Tomita Y. Development of Fracture toughness of ultrahigh Strength low alloy steels for aircraft and aerospace applications [J]. Mater. Sci. Technol., 1991, 7: 481
2 Yu M, Dong Y, Wang R Y, et al. Corrosion behavior of ultra-high strength steel 23Co14Ni12Cr3Mo in simulated seawater environment [J]. J. Mater. Eng., 2012, 40(1): 42
2 于 美, 董 宇, 王瑞阳 等. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为 [J]. 材料工程, 2012, 40(1): 42
3 Montoya P, Díaz I, Granizo N, et al. An study on accelerated corrosion testing of weathering steel [J]. Mater. Chem. Phys., 2013, 142: 220
4 Liu J H, Wen C, Yu M, et al. Manifestations in corrosion prophase of ultra-high strength steel 30CrMnSiNi2A in sodium chloride solutions [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2014, 29: 367
5 Yu X M, Huang Y L, Yadav A P, et al. Study on the temperature dependence of pitting behaviour of AISI 4135 steel in marine splash zone [J]. Electrochemistry, 2015, 83: 541
6 Guo Q, Liu J H, Yu M, et al. Influence of rust layers on the corrosion behavior of ultra-high strength steel 300M subjected to wet-dry cyclic environment with chloride and low humidity [J]. Acta Metall. Sin. Engl. Lett., 2015, 28: 139
7 Palin-Luc T, Pérez-Mora R, Bathias C, et al. Fatigue crack initiation and growth on a steel in the very high cycle regime with sea water corrosion [J]. Eng. Fract. Mech., 2010, 77: 1953
8 Zhao W M, Wang Y X, Zhang T M, et al. Study on the mechanism of high-cycle corrosion fatigue crack initiation in X80 steel [J]. Corros. Sci., 2012, 57: 99
9 Yang J, Wang T S, Zhang B, et al. High-cycle bending fatigue behaviour of nanostructured bainitic steel [J]. Scr. Mater., 2012, 66: 363
10 Tian H Y, Wang X, Cui Z Y, et al. Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater [J]. Corros. Sci., 2018, 144: 145
11 Tian H Y, Xin J C, Li Y, et al. Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater [J]. Corros. Sci., 2019, 158: 108089
12 Wang Z F, Yin F X, Wu L X, et al. Corrosion resistance on high strength bainitic steel and 09CuPCrNi after wet-dry cyclic conditions [J]. J. Iron Steel Res. Int., 2013, 20: 72
13 Liu Z J, Cheng X Q, Lv S J, et al. Evaluation and comparison of corrosion behavior on 20 & 08 carbon steels in simulated circulating cooling water [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 289
13 刘佐嘉, 程学群, 吕胜杰 等. 20钢与08碳钢的循环水腐蚀行为评价对比 [J]. 中国腐蚀与防护学报, 2011, 31: 289
14 Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
14 翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398
doi: 10.11902/1005.4537.2019.272
15 Shen S Y, Wang D S, Sun S B, et al. Corrosion behavior in artificial seawater of subzero treated EH40 marine steel suitable for extremely cold environments [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 151
15 沈树阳, 王东胜, 孙士斌 等. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响 [J]. 中国腐蚀与防护学报, 2020, 40: 151
doi: 10.11902/1005.4537.2019.010
16 Fu G Q, Zhu M Y, Gao X L. Rust layer formed on low carbon weathering steels with different Mn, Ni contents in environment containing chloride ions [J]. Mater. Sci. Medzg., 2016, 22: 501
17 De La Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
18 De La Fuente D, Alcántara J, Chico B, et al. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques [J]. Corros. Sci., 2016, 110: 253
19 Zhao T L, Liu K, Li Q. Comparison of the rusting behaviors of S450EW weathering steel under continuous spray and wet/dry cycling [J]. Constr. Build. Mater., 2021, 309: 125211
20 Diaz I, Cano H, De La Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76: 348
21 Dong B J, Liu W, Zhang T Y, et al. Corrosion failure analysis of low alloy steel and carbon steel rebar in tropical marine atmospheric environment: Outdoor exposure and indoor test [J]. Eng. Fail. Anal., 2021, 129: 105720
22 Deslouis C, Falaras P, Gil O, et al. Influence of clay on calcareous deposit in natural and artificial sea water [J]. Electrochim. Acta, 2006, 51: 3173
23 Zhang J, Yu Z H, Zhao X, et al. The interaction of biofoulants and calcareous deposits on corrosion performance of Q235 in seawater [J]. Materials, 2020, 13: 850
24 Xu H B, Li L, Peng L N, et al. Effect of the calcareous deposits on the stress corrosion cracking behavior of 10Ni5CrMoV high strength steel in deep-sea environment [J]. Int. J. Electrochem. Sci., 2021, 16: 210536
25 Ramana K V S, Kaliappan S, Ramanathan N, et al. Characterization of rust phases formed on low carbon steel exposed to natural marine environment of Chennai harbour - South India [J]. Mater. Corros., 2007, 58: 873
26 Qian A, Jin P, Tan X M, et al. Corrosion and electrochemical properties of AerMet100 steel in salt fog [J]. Surf. Technol., 2018, 47(10): 231
26 钱 昂, 金 平, 谭晓明 等. AerMet100钢在盐雾中的腐蚀与电化学特性 [J]. 表面技术, 2018, 47(10): 231
27 Liu Z G, Gao X H, Li J P, et al. Corrosion behaviour of low-alloy martensite steel exposed to vapour-saturated CO2 and CO2-saturated brine conditions [J]. Electrochim. Acta, 2016, 213: 842
28 Yuan R, Wu H B, Gu Y. Effect of alloyed Cr on corrosion behavior of low-alloy steel in wet atmosphere [J]. Mater. Corros., 2022, 73: 918
29 Wen C, Tian Y W, Wang G, et al. The influence of nickel on corrosion behavior of low alloy steel in a cyclic wet-dry condition [J]. Int. J. Electrochem. Sci., 2016, 11: 4161
30 Gao X L, Fu G Q, Zhu M Y. Effect of nickel on ion-selective property of rust formed on low-alloying weathering steel [J]. Acta. Metall. Sin. Engl. Lett., 2012, 25: 295
31 Zhang W, Zhang X, Qiao G J, et al. Effect of cobalt on the microstructure and corrosion behavior of martensitic age-hardened stainless steel [J]. J. Mater. Eng. Perform., 2019, 28: 4197
doi: 10.1007/s11665-019-04185-x
[1] 杜广, 芦国强, 邓龙辉, 蒋佳宁, 曹学强. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[2] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[3] 张运军, 蒋有伟, 张忠义, 吕乃欣, 陈君伟, 连国锋. 3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[4] 冷文俊, 石西召, 辛永磊, 杨延格, 王利, 崔中雨, 侯健. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[5] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[6] 何逸, 郑传波, 戚浩宇, 刘珍光. TP2紫铜在工业环境中腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 71-81.
[7] 何训, 吴梦雪, 尹力, 朱金. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[8] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[9] 陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[10] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[11] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[12] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[13] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[14] 李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[15] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.