Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 621-628    DOI: 10.11902/1005.4537.2021.149
  研究报告 本期目录 | 过刊浏览 |
电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究
赵海洋1,2, 高多龙1,2, 张童3, 吕由3, 张宇鹏3, 张欣欣3(), 石鑫1,2, 魏晓静1,2, 刘冬梅1,2, 董泽华3
1.中国石油化工股份有限公司西北油田分公司 乌鲁木齐 830011
2.中国石化缝洞型油藏提高采收率重点实验室 乌鲁木齐 830011
3.华中科技大学化学与化工学院 武汉 430074
Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM
ZHAO Haiyang1,2, GAO Duolong1,2, ZHANG Tong3, LV You3, ZHANG Yupeng3, ZHANG Xinxin3(), SHI Xin1,2, WEI Xiaojing1,2, LIU Dongmei1,2, DONG Zehua3
1.SINOPEC Northwest Company of China Petroleum and Chemical Corporation, Urumqi 830011, China
2.Key Laboratory of Enhanced Oil Recovery in Carbonate Fractured-vuggy Reservoirs, SINOPEC, Urumqi 830011, China
3.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(18031 KB)   HTML
摘要: 

研究了电弧增材制造 (WAAM) 航空AA2024铝合金的微观组织结构及其腐蚀行为。通过扫描电镜 (SEM)、透射电镜 (TEM) 和能量色散X射线光谱仪 (EDX),研究了该铝合金腐蚀前后的微观组织结构以阐明其腐蚀行为。结果表明,电弧增材制造AA2024铝合金中,存在熔池区 (MPZ)、熔池边界区 (MPB) 和热影响区 (HAZ)。3个区域中均存在以孤立或成簇的形式存在的S相 (Al2CuMg)、θ相 (Al2Cu) 和α相 (AlFeMnSi) 金属间化合物 (IM)。相对MPZ和HAZ,MPB显示出更高的局部腐蚀敏感性,这与IM的脱合金化行为密切相关。

关键词 金属间化合物增材制造脱合金化AA2024铝合金局部腐蚀    
Abstract

The microstructure and corrosion behaviour of the wire arc additive manufactured (WAAM) thin wall structure of AA2024 Al-alloy are investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray spectrometer (EDX), as well as immersion test in 3.5%NaCl solution. Three distinctive areas, including melt pool zone (MPZ), melt pool border (MPB) and heat affected zone (HAZ), were formed in the WAAM structure. S-phase, θ-phase and α-phase are present in all three zones, which could exist individually or in cluster. Localized corrosion tends to initiate at MPB rather than HAZ and MPZ, which is closely associated with the de-alloying behaviour of intermetallic (IM) particles.

Key wordsintermetallic    additive manufacturing    de-alloying    AA2024 Al-alloy    localized corrosion
收稿日期: 2021-06-29     
ZTFLH:  TG172.5  
基金资助:湖北省自然科学基金(2020CFB295);国家航空科学基金(2020Z008079004);国家自然科学基金(52001128)
通讯作者: 张欣欣     E-mail: xinxinzhang@hust.edu.cn
Corresponding author: ZHANG Xinxin     E-mail: xinxinzhang@hust.edu.cn
作者简介: 赵海洋,男,1973年生,博士,教授级高级工程师

引用本文:

赵海洋, 高多龙, 张童, 吕由, 张宇鹏, 张欣欣, 石鑫, 魏晓静, 刘冬梅, 董泽华. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
Haiyang ZHAO, Duolong GAO, Tong ZHANG, You LV, Yupeng ZHANG, Xinxin ZHANG, Xin SHI, Xiaojing WEI, Dongmei LIU, Zehua DONG. Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 621-628.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.149      或      https://www.jcscp.org/CN/Y2022/V42/I4/621

图1  WAAM工艺原理图
图2  WAAM薄壁结构经Barker试剂阳极氧化后的显微组织
图3  WAAM薄壁显微组织结构的SEM形貌
图4  S相、θ相和α相及薄壁结构中MPZ、MPB和HAZ的SEM像以及相应的EDX图
图5  MPB中金属间化合物团簇的HAADF显微图及其EDX图
图6  浸泡30 min和10 h后的WAAM薄壁的光学照片
图7  浸泡30 min和10 h后WAAM薄壁结构的SEM形貌
图8  MPB中典型局部腐蚀部位截面HAADF像及典型纳米粒子的EDX、高分辨TEM像和电子衍射像
1 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
1 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
2 Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
3 Gong S L, Suo H B, Li H X. Development and application of metal Additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
3 巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66
4 Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronaut. Manuf. Technol., 2016, (12): 26
4 杨强, 鲁中良, 黄福享 等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
5 Karabin L M, Bray G H, Rioja R J, et al. Al-Li-Cu-Mg-(Ag) products for lower wing skin applications [A]. Proceedings of the 13th International Conference on Aluminum Alloys [C]. Cham, 2012: 529
6 Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
6 林鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
7 Williams S W, Martina F, Addison A C, et al. Wire+arc additive manufacturing [J]. Mater. Sci. Technol., 2016, 32: 641
doi: 10.1179/1743284715Y.0000000073
8 Frazier W E. Metal additive manufacturing: a review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
9 Gong X B, Anderson T, Chou K, et al. Review on powder-based electron beam additive manufacturing technology [A]. ASME/ISCIE 2012 International Symposium on Flexible Automation [C]. St. Louis, 2012: 507
10 Zhang X X, Lv Y, Tan S H, et al. Microstructure and corrosion be/haviour of wire arc additive manufactured AA2024 alloy thin wall structure [J]. Corros. Sci., 2021, 186: 109453
doi: 10.1016/j.corsci.2021.109453
11 Vimal K E K, Srinivas M N, Rajak S. Wire arc additive manufacturing of aluminium alloys: a review [J]. Mater. Today: Proc., 2021, 41: 1139
12 Wang F D, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J]. Metall. Mater. Trans., 2013, 44A: 968
13 Qiao J S, Xia Z H, Liu L B, et al. Corrosion resistance of aluminum-magnesium bimetal composite material prepared by isothermal indirect extrusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 255
13 乔及森, 夏宗辉, 刘立博 等. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 255
14 Bartkowiak K, Ullrich S, Frick T, et al. New developments of laser processing aluminium alloys via additive manufacturing technique [J]. Phys. Proced., 2011, 12: 393
doi: 10.1016/j.phpro.2011.03.050
15 Yang X Y, Li Y, Zhao P K, et al. Research status and challenges of wire and arc additive manufacturing in material preparation [J]. Weld. Join., 2018, (8): 14
15 杨笑宇, 李言, 赵鹏康 等. 电弧增材制造技术在材料制备中的研究现状及挑战 [J]. 焊接, 2018, (8): 14
16 Moran T P, Warner D H, Phan N. Scan-by-scan part-scale thermal modelling for defect prediction in metal additive manufacturing [J]. Addit. Manuf., 2021, 37: 101667
17 Plessis A D, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: a review focusing on X-ray tomography insights [J]. Mater. Design, 2019, 187: 108385
18 Geng R W, Du J, Wei Z Y, et al. Multiscale modelling of microstructure, micro-segregation, and local mechanical properties of Al-Cu alloys in wire and arc additive manufacturing [J]. Addit. Manuf., 2020, 36: 1017
19 Zhang X X, Liu B, Zhou X R, et al. Laser welding introduced segregation and its influence on the corrosion behaviour of Al-Cu-Li alloy [J]. Corros. Sci., 2018, 135: 177
doi: 10.1016/j.corsci.2018.02.044
20 Rafieazad M, Mohammadi M, Nasiri A M. On microstructure and early stage corrosion performance of heat treated direct metal laser sintered AlSi10Mg [J]. Addit. Manuf., 2019, 28: 107
doi: 10.1016/j.addma.2019.04.023
21 Rubben T, Revilla R I, De Graeve I. Influence of heat treatments on the corrosion mechanism of additive manufactured AlSi10Mg [J]. Corros. Sci., 2019, 147: 406
doi: 10.1016/j.corsci.2018.11.038
22 Gharbi O, Jiang D, Feenstra D R, et al. On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting [J]. Corros. Sci., 2018, 143: 93
doi: 10.1016/j.corsci.2018.08.019
23 Fathi P, Mohammadi M, Duan X L, et al. A comparative study on corrosion and microstructure of direct metal laser sintered AlSi10Mg_200C and die cast A360.1 aluminum [J]. J. Mater. Process. Tech., 2018, 259: 1
doi: 10.1016/j.jmatprotec.2018.04.013
24 Wang P, Zhang Z D, Song G, et al. Analysis of laser-arc composite additive manufacturing process for aluminum alloy [J]. Weld. Technol., 2016, 45(10): 10
24 王鹏, 张兆栋, 宋刚 等. 铝合金激光-电弧复合增材制造工艺分析 [J]. 焊接技术, 2016, 45(10): 10
25 Fang X W, Zhang L J, Chen G P, et al. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering [J]. Mater. Sci. Eng., 2021, 800A: 140168
26 Yoder J K, Griffiths R J, Yu H Z. Deformation-based additive manufacturing of 7075 aluminum with wrought-like mechanical properties [J]. Mater. Design, 2021, 198: 109288
27 Hashimoto T, Zhang X, Zhou X, et al. Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging [J]. Corros. Sci., 2016, 103: 157
doi: 10.1016/j.corsci.2015.11.013
28 Zhang X, Hashimoto T, Lindsay J, et al. Investigation of the de-alloying behaviour of θ-phase (Al2Cu) in AA2024-T351 aluminium alloy [J]. Corros. Sci., 2016, 108: 85
doi: 10.1016/j.corsci.2016.03.003
29 Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying [J]. Nature, 2001, 410: 450
doi: 10.1038/35068529
30 Buchheit R G, Grant R P, Hlava P F, et al. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 1997, 144: 2621
doi: 10.1149/1.1837874
31 Boag A, Taylor R J, Muster T H, et al. Stable pit formation on AA2024-T3 in a NaCl environment [J]. Corros. Sci., 2010, 52: 90
doi: 10.1016/j.corsci.2009.08.043
32 Boag A, Hughes A E, Glenn A M, et al. Corrosion of AA2024-T3 part I: localised corrosion of isolated IM particles [J]. Corros. Sci., 2011, 53: 17
doi: 10.1016/j.corsci.2010.09.009
33 Hashimoto T, Curioni M, Zhou X, et al. Investigation of dealloying by ultra-high-resolution nanotomography [J]. Surf. Interface Anal., 2013, 45: 1548
doi: 10.1002/sia.5176
34 Zhou X, Luo C, Hashimoto T, et al. Study of localized corrosion in AA2024 aluminium alloy using electron tomography [J]. Corros. Sci., 2012, 58: 299
doi: 10.1016/j.corsci.2012.02.001
35 Zhang X X, Zhou X R, Hashimoto T, et al. Localized corrosion in AA2024-T351 aluminium alloy: transition from intergranular corrosion to crystallographic pitting [J]. Mater. Charact., 2017, 130: 230
doi: 10.1016/j.matchar.2017.06.022
36 Szklarska-Smialowska Z. Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
37 Zhang X X, Jiao Y B, Yu Y, et al. Intergranular corrosion in AA2024-T3 aluminium alloy: the influence of stored energy and prediction [J]. Corros. Sci., 2019, 155: 1
doi: 10.1016/j.corsci.2019.04.031
[1] 吕祥鸿, 马晓凤, 胡兆伟, 李媛媛, 王晨. T/S-52K直缝钢在不同Cl-浓度下的腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[2] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[3] 史伟宁,杨树峰,李京社. 不锈钢中诱发局部腐蚀的贫Cr区研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 281-290.
[4] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[5] 冯超, 彭碧草, 谢亿, 王军, 李明欢, 吴堂清, 尹付成. 0.1%NaHSO3盐雾条件下T91钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[6] 张彭辉, 逄昆, 丁康康, 孔祥峰, 彭欣. 扫描振动电极技术在腐蚀领域的应用进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 315-321.
[7] 陈瑶,张洪华,杨干兰,向军淮. 热处理对FeAl-Cr3C2复合涂层微观结构的影响[J]. 中国腐蚀与防护学报, 2017, 37(1): 58-62.
[8] 赵书振,许立宁,窦娟娟,常炜,路民旭. 醋酸对X70管线钢CO2湿气顶部腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 231-237.
[9] 唐晓,时春涛,曹光,李焰. 海岸土壤环境对油气管道局部腐蚀的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 191-196.
[10] 刘士强, 王立达, 宗秋凤, 张成, 刘贵昌. 纯Al表面局部孔蚀的电化学噪声特征分析[J]. 中国腐蚀与防护学报, 2014, 34(2): 160-164.
[11] 刘玉,李焰. 天然气管线钢CO2腐蚀研究进展[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[12] 王帅波 尹衍升 刘涛 滕少磊. 超疏水膜改性Fe3Al在海水中的腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(2): 137-140.
[13] 朱元良; 郭兴蓬 . 中性介质中碳钢腐蚀沉积膜下局部腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28(5): 271-276 .
[14] 叶威; 李瑛; 王福会 . 单相和双相不锈钢纳米涂层的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28(3): 129-134 .
[15] 张仕臻; 郭建亭; 任维丽; 周文龙 . 稀土元素对NiAl/CrMo(Hf)共晶合金氧化性能影响[J]. 中国腐蚀与防护学报, 2005, 25(2): 110-114 .