|
|
晶粒尺寸对304L奥氏体不锈钢氢脆的影响 |
王艳飞1( ), 李耀州1, 黄玉婷1, 谢宏琳1, 吴炜杰2 |
1.中国矿业大学化工学院 徐州 221116 2.北京科技大学新材料技术研究院 北京 100083 |
|
Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel |
WANG Yanfei1( ), LI Yaozhou1, HUANG Yuting1, XIE Honglin1, WU Weijie2 |
1.School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China 2.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
WANG Yanfei,
LI Yaozhou,
HUANG Yuting,
XIE Honglin,
WU Weijie.
Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 494-506.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.238
或
https://www.jcscp.org/CN/Y2023/V43/I3/494
|
1 |
Li X F, Ma X F, Zhang J, et al. Review of hydrogen embrittlement in metals: Hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 759
doi: 10.1007/s40195-020-01039-7
|
2 |
Lan L Y, Kong X W, Qiu C L, et al. A review of recent advance on hydrogen embrittlement phenomenon based on multiscale mechanical experiments [J]. Acta Metall. Sin., 2021, 57: 845
doi: 10.11900/0412.1961.2020.00378
|
2 |
兰亮云, 孔祥伟, 邱春林 等. 基于多尺度力学实验的氢脆现象的最新研究进展 [J]. 金属学报, 2021, 57: 845
doi: 10.11900/0412.1961.2020.00378
|
3 |
Djukic M B, Zeravcic V S, Bakic G M, et al. Hydrogen damage of steels: A case study and hydrogen embrittlement model [J]. Eng. Fail. Anal., 2015, 58: 485
doi: 10.1016/j.engfailanal.2015.05.017
|
4 |
Djukic M B, Bakic G M, Zeravcic V S, et al. Hydrogen embrittlement of industrial components: prediction, prevention, and models [J]. Corrosion, 2016, 72: 943
doi: 10.5006/1958
|
5 |
Verma V K, Koyama M, Hamada S, et al. Effects of hydrogen content that alters damage evolution mechanisms in SUH 660 precipitation-strengthened Fe-Cr-Ni steel [J]. Mater. Sci. Eng., 2020, 791A: 139750
|
6 |
Yang G, Huang C X, Wu S D, et al. Strain-induced martensitic transformation in 304L austenitic stainless steel under EACP deformation [J]. Acta Metall. Sin., 2009, 45: 906
|
6 |
杨 钢, 黄崇湘, 吴世丁 等. ECAP变形下304L奥氏体不锈钢的形变诱导马氏体相变 [J]. 金属学报, 2009, 45: 906
|
7 |
Wan X L, Li G Q, Zhou B W, et al. Effect of grain refinement on deformation mechanism and mechanical properties of austenitic stainless steel [J]. J. Mater. Eng., 2016, 44(8): 29
|
7 |
万响亮, 李光强, 周博文 等. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响 [J]. 材料工程, 2016, 44(8): 29
|
8 |
Mine Y, Haraguchi D, Horita Z, et al. High-pressure torsion of metastable austenitic stainless steel at moderate temperatures [J]. Phil. Mag. Lett., 2015, 95: 269
doi: 10.1080/09500839.2015.1051602
|
9 |
Macadre A, Nakada N, Tsuchiyama T, et al. Critical grain size to limit the hydrogen-induced ductility drop in a metastable austenitic steel [J]. Int. J. Hydrogen Energy, 2015, 40: 10697
doi: 10.1016/j.ijhydene.2015.06.111
|
10 |
Fan Y H, Zhang B, Wang J Q, et al. Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 2213
doi: 10.1016/j.jmst.2019.03.043
|
11 |
Bai Y, Tian Y Z, Gao S, et al. Hydrogen embrittlement behaviors of ultrafine-grained 22Mn-0.6C austenitic twinning induced plasticity steel [J]. J. Mater. Res., 2017, 32: 4592
doi: 10.1557/jmr.2017.351
|
12 |
Bai Y, Momotani Y, Chen M C, et al. Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel [J]. Mater. Sci. Eng., 2016, 651A: 935
|
13 |
Park I J, Lee S M, Jeon H H, et al. The advantage of grain refinement in the hydrogen embrittlement of Fe-18Mn-0. 6C twinning-induced plasticity steel [J]. Corros. Sci., 2015, 93: 63
doi: 10.1016/j.corsci.2015.01.012
|
14 |
Koyama M, Ichii K, Tsuzaki K. Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy [J]. Int. J. Hydrog. Energy, 2019, 44: 17163
doi: 10.1016/j.ijhydene.2019.04.280
|
15 |
Fu Z H, Yang B J, Chen M, et al. Effect of recrystallization annealing treatment on the hydrogen embrittlement behavior of equimolar CoCrFeMnNi high entropy alloy [J]. Int. J. Hydrog. Energy, 2021, 46: 6970
doi: 10.1016/j.ijhydene.2020.11.154
|
16 |
Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram [J]. Acta Metall., 1953, 1: 22
doi: 10.1016/0001-6160(53)90006-6
|
17 |
Shintani T, Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction [J]. Acta Mater., 2011, 59: 4314
doi: 10.1016/j.actamat.2011.03.055
|
18 |
Michler T, Naumann J, Hock M, et al. Microstructural properties controlling hydrogen environment embrittlement of cold worked 316 type austenitic stainless steels [J]. Mater. Sci. Eng., 2015, 628A: 252
|
19 |
Odnobokova M, Belyakov A, Enikeev N, et al. Annealing behavior of a 304L stainless steel processed by large strain cold and warm rolling [J]. Mater. Sci. Eng., 2017, 689A: 370
|
20 |
Shang X Q, Zhang H M, Cui Z S, et al. A multiscale investigation into the effect of grain size on void evolution and ductile fracture: Experiments and crystal plasticity modeling [J]. Int. J. Plast., 2020, 125: 133
doi: 10.1016/j.ijplas.2019.09.009
|
21 |
Dadfarnia M, Martin M L, Nagao A, et al. Modeling hydrogen transport by dislocations [J]. J. Mech. Phys. Solids, 2015, 78: 511
doi: 10.1016/j.jmps.2015.03.002
|
22 |
Hua Z L, Zhu S Y, Zhang Y W, et al. A method to calculate hydrogen trap binding energy in austenitic stainless steel using local equilibrium model [J]. Int. J. Hydrog. Energy, 2018, 43: 22676
doi: 10.1016/j.ijhydene.2018.10.079
|
23 |
Hirth J P. Effects of hydrogen on the properties of iron and steel [J]. Metall. Trans., 1980, 11A: 861
|
24 |
Chu W Y. Hydrogen Damage and Delayed Fracture [M]. Beijing: Metallurgical Industry Press, 1988: 54
|
24 |
褚武扬. 氢损伤和滞后断裂 [M]. 北京: 冶金工业出版社, 1988: 54
|
25 |
Olden V, Thaulow C, Johnsen R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels [J]. Mater. Des., 2008, 29: 1934
doi: 10.1016/j.matdes.2008.04.026
|
26 |
Carter C B, Donald A M, Sass S L. The study of grain boundary thickness using electron diffraction techniques [J]. Philos. Mag., 1980, 41A: 467
|
27 |
Gerberich W W, Chen Y T, John C S T. A short-time diffusion correlation for hydrogen-induced crack growth kinetics [J]. Metall. Trans., 1975, 6A: 1485
|
28 |
Pu S D, Ooi S W. Hydrogen transport by dislocation movement in austenitic steel [J]. Mater. Sci. Eng., 2019, 761A: 138059
|
29 |
Kumnick A J, Johnson H H. Deep trapping states for hydrogen in deformed iron [J]. Acta Metall., 1980, 28: 33
doi: 10.1016/0001-6160(80)90038-3
|
30 |
Liang Y, Sofronis P. Toward a phenomenological description of hydrogen-induced decohesion at particle/matrix interfaces [J]. J. Mech. Phys. Solids, 2003, 51: 1509
doi: 10.1016/S0022-5096(03)00052-8
|
31 |
Takayama K, Matsumoto R, Taketomi S, et al. Hydrogen diffusion analyses of a cracked steel pipe under internal pressure [J]. Int. J. Hydrogen Energy, 2011, 36: 1037
doi: 10.1016/j.ijhydene.2010.10.046
|
32 |
Huang H, Shaw W J D. Hydrogen embrittlement interactions in cold-worked steel [J]. Corrosion, 1995, 51: 30
doi: 10.5006/1.3293573
|
33 |
Sofronis P, McMeeking R M. Numerical analysis of hydrogen transport near a blunting crack tip [J]. J. Mech. Phys. Solids, 1989, 37: 317
doi: 10.1016/0022-5096(89)90002-1
|
34 |
Wang Y F, Wu X P, Zhou Z L, et al. Numerical analysis of hydrogen transport into a steel after shot peening [J]. Results Phys., 2018, 11: 5
doi: 10.1016/j.rinp.2018.08.030
|
35 |
Wang Y F, Li X F, Dou D Y, et al. FE analysis of hydrogen diffusion around a crack tip in an austenitic stainless steel [J]. Int. J. Hydrog. Energy, 2016, 41: 6053
doi: 10.1016/j.ijhydene.2016.03.003
|
36 |
Dadfarnia M, Sofronis P, Neeraj T. Hydrogen interaction with multiple traps: Can it be used to mitigate embrittlement? [J]. Int. J. Hydrog. Energy, 2011, 36: 10141
doi: 10.1016/j.ijhydene.2011.05.027
|
37 |
Kimura Y, Sakai Y, Hara T, et al. Hydrogen induced delayed fracture of ultrafine grained 0.6% O steel with dispersed oxide particles [J]. Scri. Mater., 2003, 49: 1111
doi: 10.1016/j.scriptamat.2003.08.006
|
38 |
Liu Y, Wang M Q, Liu G Q. Effect of hydrogen on ductility of high strength 3Ni-Cr-Mo-V steels [J]. Mater. Sci. Eng., 2014, 594A: 40
|
39 |
Michler T, Naumann J. Microstructural aspects upon hydrogen environment embrittlement of various bcc steels [J]. Int. J. Hydrog. Energy, 2010, 35: 821
doi: 10.1016/j.ijhydene.2009.10.092
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|