Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 494-506     CSTR: 32134.14.1005.4537.2022.238      DOI: 10.11902/1005.4537.2022.238
  研究报告 本期目录 | 过刊浏览 |
晶粒尺寸对304L奥氏体不锈钢氢脆的影响
王艳飞1(), 李耀州1, 黄玉婷1, 谢宏琳1, 吴炜杰2
1.中国矿业大学化工学院 徐州 221116
2.北京科技大学新材料技术研究院 北京 100083
Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel
WANG Yanfei1(), LI Yaozhou1, HUANG Yuting1, XIE Honglin1, WU Weijie2
1.School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
2.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(8861 KB)   HTML
摘要: 

考虑到在预充氢与动态充氢两种加氢条件下的氢扩散、陷阱与位错运动的相互影响存在差异,本文通过重度冷轧和退火处理制备了不同晶粒尺寸的304L不锈钢试样,采用单轴拉伸实验对比研究了预充氢和动态充氢两种条件下晶粒尺寸对钢HE敏感性的影响,并结合断口分析从氢陷阱、氢浓度的角度分析了晶界的作用。结果表明,动态充氢下,表面裂纹扩展和位错运动能够提高氢的有效扩散系数并加速氢进入试样内,但随着晶粒尺寸降低,由于晶界陷阱作用增加,氢的有效扩散系数降低,同时由于进入试样的氢被大量晶界陷阱瓜分使氢分布均匀化,使每个晶界处的局部氢浓度降低,因此动态充氢条件下晶粒细化抑制钢的HE。相反,预充氢条件下晶粒细化增加HE,因为较长的预充氢时间 (96 h) 使大量氢进入细晶试样并存储于晶界陷阱内,提高了晶界氢浓度,在后续拉伸过程中,晶界作为氢源向新生位错供氢,因此导致了细晶试样的HE敏感性反而更高。

关键词 氢脆奥氏体不锈钢晶粒尺寸氢陷阱    
Abstract

The effect of hydrogen pre-charging and in situ charging on performance of the charged steel is different due to the diverse interactions between hydrogen diffusion, trapping and dislocation movements for the two processes. In this paper, 304L austenitic stainless steels of different grain size were produced by heavy cold-rolling and annealing treatment, and then their hydrogen embrittlement behavior were investigated by tensile tests, while the testing steels were subjected to either hydrogen pre-charging or in-situ charging. The results showed that, during tensile testing by in situ hydrogen charging, the emerging surface cracks and dislocation movements could increase effective hydrogen diffusivity, meanwhile, the entering hydrogen is absorbed by a large number of grain boundary traps in the steel to homogenize the distribution of hydrogen, which leads to the relative decrease of local hydrogen concentration for each grain boundary. Therefore, grain refinement can inhibit the hydrogen embrittlement tendency of steel during tensile test while dynamic hydrogen charging. On the contrary, a long pre-charging time (96 h) makes a large amount of hydrogen enter the fine-grained steel and store in the grain boundary traps, which increases the concentration of hydrogen in grain boundaries. In the subsequent tensile testing, the grain boundaries serve as a source to supply hydrogen to the newly generated dislocations, resulting in a higher sensitivity of fine-grained steel to hydrogen embrittlement. Indeed, for the steel subjected to pre-charging hydrogen, no evident of decrease in hydrogen concentration of grain boundaries was indicated after grain refinement. As the steel being subjected to pre-charging, each grain boundary contained a high amount of hydrogen, which may act as source for delivery of hydrogen to the newly generated dislocations, therefore, grain refinement enhanced the HE of fine-grained steels.

Key wordshydrogen embrittlement    austenitic stainless steel    grain size    hydrogen trapping
收稿日期: 2022-07-20      32134.14.1005.4537.2022.238
ZTFLH:  TG142  
基金资助:国家自然科学基金(52175205)
通讯作者: 王艳飞,E-mail:wyf_hg@cumt.edu.cn,研究方向为金属氢脆及其防护
Corresponding author: WANG Yanfei, E-mail: wyf_hg@cumt.edu.cn
作者简介: 王艳飞,男,1986年生,博士,副教授

引用本文:

王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
WANG Yanfei, LI Yaozhou, HUANG Yuting, XIE Honglin, WU Weijie. Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 494-506.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.238      或      https://www.jcscp.org/CN/Y2023/V43/I3/494

图1  不同退火处理试样的XRD图谱和Williamson-Hall图
图2  各试样显示晶粒尺寸的金相图
SpecimenTA / ℃tA / mind / μmVαʹ / %ρd / m-3
AT700-570051.316.11.2×1014
AT800-20800203.76.64.2×1013
AT900-209002014.31.83.7×1013
AT1050-2010502035.00.894.2×1013
表1  不同退火处理试样的平均晶粒尺寸、αʹ马氏体含量和位错密度
图3  各退火试样的拉伸应力应变曲线、屈服强度和预充氢试样与动态充氢试样HE敏感性指数比较
图4  未充氢试样的断口心部和边缘区域形貌
图5  充氢试样断口心部形貌
图6  动态充氢试样断口边缘区域断裂形貌
图7  预充氢试样断口边缘区域断裂形貌
SpecimenH pre-chargedIn situ H-charged
zb / μmmH / μgDeff / m2·s-1zb / μmmH / μgDeff / m2·s-1
AT700-57.6±2.15.521.04×10-17/0.98/
AT800-209.6±2.66.251.67×10-1715.3±6.41.465.21×10-15
AT900-2020.0±4.36.896.87×10-1756.4±5.42.096.45×10-14
AT1050-2055.6±4.87.355.59×10-16178.0±4.25.986.37×10-13
表2  充氢试样的氢含量、脆性断裂区深度和有效氢扩散系数
图8  试样内晶界陷阱密度及其充氢时表面处的晶格间隙氢浓度CLS、位错陷阱氢浓度CTS,d、晶界陷阱氢浓度CTS,gb、表面处的总氢浓度即有效氢溶解度CtotalS和单位晶界陷阱氢浓度CT,gb/NT,gb
图9  随着拉伸应变增加预充氢试样表面处氢浓度的再分布
1 Li X F, Ma X F, Zhang J, et al. Review of hydrogen embrittlement in metals: Hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 759
doi: 10.1007/s40195-020-01039-7
2 Lan L Y, Kong X W, Qiu C L, et al. A review of recent advance on hydrogen embrittlement phenomenon based on multiscale mechanical experiments [J]. Acta Metall. Sin., 2021, 57: 845
doi: 10.11900/0412.1961.2020.00378
2 兰亮云, 孔祥伟, 邱春林 等. 基于多尺度力学实验的氢脆现象的最新研究进展 [J]. 金属学报, 2021, 57: 845
doi: 10.11900/0412.1961.2020.00378
3 Djukic M B, Zeravcic V S, Bakic G M, et al. Hydrogen damage of steels: A case study and hydrogen embrittlement model [J]. Eng. Fail. Anal., 2015, 58: 485
doi: 10.1016/j.engfailanal.2015.05.017
4 Djukic M B, Bakic G M, Zeravcic V S, et al. Hydrogen embrittlement of industrial components: prediction, prevention, and models [J]. Corrosion, 2016, 72: 943
doi: 10.5006/1958
5 Verma V K, Koyama M, Hamada S, et al. Effects of hydrogen content that alters damage evolution mechanisms in SUH 660 precipitation-strengthened Fe-Cr-Ni steel [J]. Mater. Sci. Eng., 2020, 791A: 139750
6 Yang G, Huang C X, Wu S D, et al. Strain-induced martensitic transformation in 304L austenitic stainless steel under EACP deformation [J]. Acta Metall. Sin., 2009, 45: 906
6 杨 钢, 黄崇湘, 吴世丁 等. ECAP变形下304L奥氏体不锈钢的形变诱导马氏体相变 [J]. 金属学报, 2009, 45: 906
7 Wan X L, Li G Q, Zhou B W, et al. Effect of grain refinement on deformation mechanism and mechanical properties of austenitic stainless steel [J]. J. Mater. Eng., 2016, 44(8): 29
7 万响亮, 李光强, 周博文 等. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响 [J]. 材料工程, 2016, 44(8): 29
8 Mine Y, Haraguchi D, Horita Z, et al. High-pressure torsion of metastable austenitic stainless steel at moderate temperatures [J]. Phil. Mag. Lett., 2015, 95: 269
doi: 10.1080/09500839.2015.1051602
9 Macadre A, Nakada N, Tsuchiyama T, et al. Critical grain size to limit the hydrogen-induced ductility drop in a metastable austenitic steel [J]. Int. J. Hydrogen Energy, 2015, 40: 10697
doi: 10.1016/j.ijhydene.2015.06.111
10 Fan Y H, Zhang B, Wang J Q, et al. Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 2213
doi: 10.1016/j.jmst.2019.03.043
11 Bai Y, Tian Y Z, Gao S, et al. Hydrogen embrittlement behaviors of ultrafine-grained 22Mn-0.6C austenitic twinning induced plasticity steel [J]. J. Mater. Res., 2017, 32: 4592
doi: 10.1557/jmr.2017.351
12 Bai Y, Momotani Y, Chen M C, et al. Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel [J]. Mater. Sci. Eng., 2016, 651A: 935
13 Park I J, Lee S M, Jeon H H, et al. The advantage of grain refinement in the hydrogen embrittlement of Fe-18Mn-0. 6C twinning-induced plasticity steel [J]. Corros. Sci., 2015, 93: 63
doi: 10.1016/j.corsci.2015.01.012
14 Koyama M, Ichii K, Tsuzaki K. Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy [J]. Int. J. Hydrog. Energy, 2019, 44: 17163
doi: 10.1016/j.ijhydene.2019.04.280
15 Fu Z H, Yang B J, Chen M, et al. Effect of recrystallization annealing treatment on the hydrogen embrittlement behavior of equimolar CoCrFeMnNi high entropy alloy [J]. Int. J. Hydrog. Energy, 2021, 46: 6970
doi: 10.1016/j.ijhydene.2020.11.154
16 Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram [J]. Acta Metall., 1953, 1: 22
doi: 10.1016/0001-6160(53)90006-6
17 Shintani T, Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction [J]. Acta Mater., 2011, 59: 4314
doi: 10.1016/j.actamat.2011.03.055
18 Michler T, Naumann J, Hock M, et al. Microstructural properties controlling hydrogen environment embrittlement of cold worked 316 type austenitic stainless steels [J]. Mater. Sci. Eng., 2015, 628A: 252
19 Odnobokova M, Belyakov A, Enikeev N, et al. Annealing behavior of a 304L stainless steel processed by large strain cold and warm rolling [J]. Mater. Sci. Eng., 2017, 689A: 370
20 Shang X Q, Zhang H M, Cui Z S, et al. A multiscale investigation into the effect of grain size on void evolution and ductile fracture: Experiments and crystal plasticity modeling [J]. Int. J. Plast., 2020, 125: 133
doi: 10.1016/j.ijplas.2019.09.009
21 Dadfarnia M, Martin M L, Nagao A, et al. Modeling hydrogen transport by dislocations [J]. J. Mech. Phys. Solids, 2015, 78: 511
doi: 10.1016/j.jmps.2015.03.002
22 Hua Z L, Zhu S Y, Zhang Y W, et al. A method to calculate hydrogen trap binding energy in austenitic stainless steel using local equilibrium model [J]. Int. J. Hydrog. Energy, 2018, 43: 22676
doi: 10.1016/j.ijhydene.2018.10.079
23 Hirth J P. Effects of hydrogen on the properties of iron and steel [J]. Metall. Trans., 1980, 11A: 861
24 Chu W Y. Hydrogen Damage and Delayed Fracture [M]. Beijing: Metallurgical Industry Press, 1988: 54
24 褚武扬. 氢损伤和滞后断裂 [M]. 北京: 冶金工业出版社, 1988: 54
25 Olden V, Thaulow C, Johnsen R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels [J]. Mater. Des., 2008, 29: 1934
doi: 10.1016/j.matdes.2008.04.026
26 Carter C B, Donald A M, Sass S L. The study of grain boundary thickness using electron diffraction techniques [J]. Philos. Mag., 1980, 41A: 467
27 Gerberich W W, Chen Y T, John C S T. A short-time diffusion correlation for hydrogen-induced crack growth kinetics [J]. Metall. Trans., 1975, 6A: 1485
28 Pu S D, Ooi S W. Hydrogen transport by dislocation movement in austenitic steel [J]. Mater. Sci. Eng., 2019, 761A: 138059
29 Kumnick A J, Johnson H H. Deep trapping states for hydrogen in deformed iron [J]. Acta Metall., 1980, 28: 33
doi: 10.1016/0001-6160(80)90038-3
30 Liang Y, Sofronis P. Toward a phenomenological description of hydrogen-induced decohesion at particle/matrix interfaces [J]. J. Mech. Phys. Solids, 2003, 51: 1509
doi: 10.1016/S0022-5096(03)00052-8
31 Takayama K, Matsumoto R, Taketomi S, et al. Hydrogen diffusion analyses of a cracked steel pipe under internal pressure [J]. Int. J. Hydrogen Energy, 2011, 36: 1037
doi: 10.1016/j.ijhydene.2010.10.046
32 Huang H, Shaw W J D. Hydrogen embrittlement interactions in cold-worked steel [J]. Corrosion, 1995, 51: 30
doi: 10.5006/1.3293573
33 Sofronis P, McMeeking R M. Numerical analysis of hydrogen transport near a blunting crack tip [J]. J. Mech. Phys. Solids, 1989, 37: 317
doi: 10.1016/0022-5096(89)90002-1
34 Wang Y F, Wu X P, Zhou Z L, et al. Numerical analysis of hydrogen transport into a steel after shot peening [J]. Results Phys., 2018, 11: 5
doi: 10.1016/j.rinp.2018.08.030
35 Wang Y F, Li X F, Dou D Y, et al. FE analysis of hydrogen diffusion around a crack tip in an austenitic stainless steel [J]. Int. J. Hydrog. Energy, 2016, 41: 6053
doi: 10.1016/j.ijhydene.2016.03.003
36 Dadfarnia M, Sofronis P, Neeraj T. Hydrogen interaction with multiple traps: Can it be used to mitigate embrittlement? [J]. Int. J. Hydrog. Energy, 2011, 36: 10141
doi: 10.1016/j.ijhydene.2011.05.027
37 Kimura Y, Sakai Y, Hara T, et al. Hydrogen induced delayed fracture of ultrafine grained 0.6% O steel with dispersed oxide particles [J]. Scri. Mater., 2003, 49: 1111
doi: 10.1016/j.scriptamat.2003.08.006
38 Liu Y, Wang M Q, Liu G Q. Effect of hydrogen on ductility of high strength 3Ni-Cr-Mo-V steels [J]. Mater. Sci. Eng., 2014, 594A: 40
39 Michler T, Naumann J. Microstructural aspects upon hydrogen environment embrittlement of various bcc steels [J]. Int. J. Hydrog. Energy, 2010, 35: 821
doi: 10.1016/j.ijhydene.2009.10.092
[1] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[2] 彭浩, 程晓英, 李晓亮, 王兆丰, 蔡贞祥. 高强度低合金钢中V和Nb对氢陷阱的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[3] 韩瑞珠, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢的热腐蚀行为及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[4] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[5] 陈婷婷, 武晓雷, 韩培德. SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[6] 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[7] 伊璞, 侯利锋, 杜华云, 刘笑达, 贾建文, 李阳, 张威, 徐芳泓, 卫英慧. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[8] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[9] 王贞, 刘静, 张施琦, 黄峰. 应变速率对预充氢DP780钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 106-112.
[10] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[11] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[12] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[13] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[14] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[15] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.