Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1255-1262     CSTR: 32134.14.1005.4537.2023.337      DOI: 10.11902/1005.4537.2023.337
  研究报告 本期目录 | 过刊浏览 |
螺纹钢中MnS夹杂物诱发的局部腐蚀行为
韩宇龙1,2, 李健3, 郭丽雅1,2(), 杨边疆2, 陆恒昌1,2, 韦习成1,2, 董瀚1,2
1 上海大学材料科学与工程学院 上海 200444
2 上海大学(浙江)高端装备基础件材料研究院 嘉兴 314100
3 陕钢集团产业创新研究院有限公司 汉中 723000
Localized Corrosion Behavior Induced by MnS Inclusions in HRB400E Rebar Steel
HAN Yulong1,2, LI Jian3, GUO Liya1,2(), YANG Bianjiang2, LU Hengchang1,2, WEI Xicheng1,2, DONG Han1,2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314100, China
3 Shaanxi Steel Group lndustrial Innovation Research Institute Co., Ltd., Hanzhong 723000, China
引用本文:

韩宇龙, 李健, 郭丽雅, 杨边疆, 陆恒昌, 韦习成, 董瀚. 螺纹钢中MnS夹杂物诱发的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1255-1262.
Yulong HAN, Jian LI, Liya GUO, Bianjiang YANG, Hengchang LU, Xicheng WEI, Han DONG. Localized Corrosion Behavior Induced by MnS Inclusions in HRB400E Rebar Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1255-1262.

全文: PDF(20112 KB)   HTML
摘要: 

采用全自动夹杂物分析仪、浸泡实验和电子背散射衍射仪(EBSD)等手段研究了HRB400E螺纹钢中不同尺寸MnS夹杂物在Cl-环境中诱发局部腐蚀行为。原位浸泡结果表明:MnS夹杂物尺寸越大,越容易诱发局部腐蚀行为。EBSD结果表明:尺寸大于40 μm2的夹杂物容易引发腐蚀,和周围有较多的小角度晶界和较高的位错密度有关。同时,团簇大尺寸夹杂物共同诱发局部腐蚀形成的蚀坑面积大于单一夹杂物诱发的蚀坑。

关键词 MnS尺寸螺纹钢局部腐蚀    
Abstract

The effect of MnS inclusions with different sizes on the corrosion behavior of HRB400E rebar steel in 2%NaCl solution was investigated by means of automatic inclusion analyzer, immersion tests and Electron Backscattered Diffraction. The in-situ immersion test results showed that the localized corrosion was more easily induced by the relatively larger MnS inclusions than the smaller ones. The EBSD results suggested that corrosion was more likely initiated by inclusions with size above 40 μm2, and this may be related to the presence of more low-angle grain boundaries and higher dislocation densities around them. Meanwhile, compared with the pit induced by a single inclusion, the width of pits initiated by clusters of large-size inclusions were greater.

Key wordsMnS    size    rebars    localized corrosion
收稿日期: 2023-10-24      32134.14.1005.4537.2023.337
ZTFLH:  TG174  
基金资助:国家自然科学基金(42276214, 52201078);上海市青年科技英才扬帆计划(21YF1412800)
通讯作者: 郭丽雅,E-mail:liya_guo@shu.edu.cn,研究方向为钢的腐蚀机理研究
Corresponding author: GUO Liya, E-mail: liya_guo@shu.edu.cn
作者简介: 韩宇龙,男,1998年生,硕士生
图1  样品中夹杂物的OM图像和MnS夹杂物的尺寸分布
图2  尺寸分布在0~5、5~10、10~20和20~40 μm2的MnS夹杂物浸泡60 min前后的SEM-EDS图
图3  尺寸约为60.5 μm2的MnS夹杂物浸泡60 min时SEM-EDS图
图4  团簇与单一夹杂物浸泡60 min后的SEM图和3D轮廓图
图5  大小尺寸MnS夹杂物的平均取向差图和大小角度晶界图
图6  不同尺寸MnS夹杂物在Cl-环境下的腐蚀机理图
1 Bouzaffour K, Lescop B, Talbot P, et al. Development of an embedded UHF-RFID corrosion sensor for monitoring corrosion of steel in concrete [J]. IEEE Sens. J., 2021, 21: 12306
2 Yu Y C, Kang J, Feng L, et al. Pitting corrosion behavior and corrosion resistance of high strength seismic reinforcement rebar with trace rare earth [J]. J. Chin. Soc. Rare Earths, 2022, 40: 853
2 于彦冲, 康 健, 奉 亮 等. 稀土微合金化高强抗震钢筋点蚀行为及耐蚀性能研究 [J]. 中国稀土学报, 2022, 40: 853
3 Liu C, Li C, Che Z C, et al. Influence of cementite coarsening on the corrosion resistance of high strength low alloy steel [J]. npj Mater. Degrad., 2023, 7: 43
4 Ryan M P, Williams D E, Chater R J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
5 Liu C C, Zhang L F, Ren Y, et al. Review on effect of non-metallic inclusions on pitting corrosion resistance of stainless steel [J]. J. Iron Ste. Res., 2021, 33: 1040
5 刘城城, 张立峰, 任 英 等. 非金属夹杂物对不锈钢耐点蚀性能影响的综述 [J]. 钢铁研究学报, 2021, 33: 1040
doi: 10.13228/j.boyuan.issn1001-0963.20210078
6 Liu C, Chen T Q, Li X G. Research progress on initiation mechanism of local corrosion induced by inclusions in low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
6 刘 超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 746
7 Liu C, Yuan H, Li X D, et al. Initiation mechanism of localized corrosion induced by Al2O3-MnS composite inclusion in low-alloy structural steel [J]. Metals, 2022, 12: 587
8 Liu Q, Yang S F, Zhao M J, et al. Pitting corrosion of steel induced by Al2O3 inclusions [J]. Metals, 2017, 7: 347
9 Zhang X, Wei W Z, Cheng L, et al. Effects of niobium and rare earth elements on microstructure and initial marine corrosion behavior of low-alloy steels [J]. Appl. Surf. Sci., 2019, 475: 83
doi: 10.1016/j.apsusc.2018.12.243
10 Liu Y Q, Wang L J, Chou K. Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway [J]. J. Rare Earths, 2014, 32: 759
11 Li W, Li J Y, Gu J B, et al. Correlation between hyperfine structure of inclusion and localized corrosion mechanism of DSS2101 with Ce microalloying in simulated marine environment [J]. Vacuum, 2021, 191: 110361
12 Han Y L, Hao L, Wang J Q, et al. Effect of rare earth addition on corrosion sensitivity of GCr15 bearing steel in marine environment [J]. Mater. Lett., 2023, 333: 133693
13 Li G X, Wang L W, Wu H L, et al. Dissolution kinetics of the sulfide-oxide complex inclusion and resulting localized corrosion mechanism of X70 steel in deaerated acidic environment [J]. Corros. Sci., 2020, 174: 108815
14 Nan H. Effect of TiN inclusion on pitting of an ultra-pure ferritic stainless steel [J]. Corros. Prot., 2021, 42(9): 22
14 南 海. TiN夹杂物对超纯铁素体不锈钢点蚀的影响 [J]. 腐蚀与防护, 2021, 42(9): 22
15 Zhang X W, Zhao S L, Wang Z, et al. The pitting to uniform corrosion evolution process promoted by large inclusions in mooring chain steels [J]. Mater. Charact., 2021, 181: 111456
16 Zhang Y H, Liu J, Huang F, et al. Effect of composition and size of oxide inclusions on pitting initiation of 2205 duplex stainless steel [J]. Corros. Sci. Prot. Technol., 2018, 30: 105
16 张耀华, 刘 静, 黄 峰 等. 2205双相不锈钢中氧化物夹杂的成分和尺寸对点蚀萌生的影响 [J]. 腐蚀科学与防护技术, 2018, 30: 105
doi: 10.11903/1002.6495.2018.011
17 Park I J, Lee S M, Kang M, et al. Pitting corrosion behavior in advanced high strength steels [J]. J. Alloy. Compd., 2015, 619: 205
18 Yang S F, Zhao M J, Feng J, et al. Induced-pitting behaviors of MnS inclusions in steel [J]. High Temp. Mater. Process., 2018, 37: 1007
19 Shi W N, Yang S F, Dong A P, et al. Understanding the corrosion mechanism of spring steel induced by MnS inclusions with different sizes [J]. JOM, 2018, 70: 2513
20 Song D, Sun W, Jiang J Y, et al. Corrosion behavior of Cr micro-alloyed corrosion-resistant rebar in neutral Cl- -containing environment [J]. J. Iron Steel Res. Int., 2016, 23: 608
21 Peng Y Z, Gong F Y, Zhao Y X. Distribution of stray current induced corrosion of reinforced bars within concrete based on electric field analysis and experiment with transparent imitated concrete [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
21 彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究 [J]. 中国腐蚀与防护学报, 2022, 42: 813
doi: 10.11902/1005.4537.2021.265
22 Hu J Z, Cheng X Q, Li X G, et al. The coupled effect of temperature and carbonation on the corrosion of Rebars in the simulated concrete pore solutions [J]. J. Chem., 2015, 2015: 462605
23 Liu T, Li N N, Liu C, et al. Attempt to optimize the corrosion resistance of HRB400 steel rebar with Cr and RE [J]. Materials, 2022, 15: 8269
24 Wang C G, Ma R Y, Zhou Y T, et al. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel [J]. J. Mater. Sci. Technol., 2021, 93: 232
doi: 10.1016/j.jmst.2021.03.014
25 Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
26 Jiang B, Wang C, Song R G, et al. Effect of creep ageing on the corrosion behaviour of an Al-Cu-Li alloy [J]. Corros. Sci., 2022, 202: 110314
27 Shen K L, Jiang W C, Sun C, et al. Insight into microstructure, microhardness and corrosion performance of 2205 duplex stainless steel: Effect of plastic pre-strain [J]. Corros. Sci., 2023, 210: 110847
28 Peŝiĉka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels [J]. Mater. Sci. Eng., 2004, 387-389A: 176
29 Qin X X, Gu Y J, Zhang L C, et al. Continuum model and numerical method for dislocation structure and energy of grain boundaries [J]. Multiscale Model. Simul., 2022, 20: 323
30 Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490
31 Avci R, Davis B H, Wolfenden M L, et al. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media [J]. Corros. Sci., 2013, 76: 267
32 Brossia C S, Kelly R G. Occluded solution chemistry control and the role of alloy sulfur on the initiation of crevice corrosion in type 304ss [J]. Corros. Sci., 1998, 40: 1851
33 Wei W Z, Wu KM, Liu J, et al. Initiation and propagation of localized corrosion induced by (Zr, Ti, Al)-O x inclusions in low-alloy steels in marine environment [J]. J. Iron Steel Res. Int., 2021, 28: 453
34 Wan Y, Gao S, Zhang X J, et al. Effect of manganese sulfide inclusion morphology on the corrosion resistance and pitting corrosion behavior of free-cutting austenitic stainless steel [J]. J. Mater. Eng. Perform., 2024, 33: 336
[1] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[2] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[3] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[4] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[5] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[6] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[7] 王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[8] 黄家和, 袁曦, 陈文, 闫文静, 金正宇, 柳海宪, 刘宏芳, 刘宏伟. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[9] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[10] 庞涛, 刘静, 黄峰, 李闯, 赵国知, 黄先球, 郑建国, 程鹏. 武汉地铁钢轨在典型隧道环境中的腐蚀现状分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 798-804.
[11] 赵海洋, 高多龙, 张童, 吕由, 张宇鹏, 张欣欣, 石鑫, 魏晓静, 刘冬梅, 董泽华. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[12] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[13] 吕祥鸿, 马晓凤, 胡兆伟, 李媛媛, 王晨. T/S-52K直缝钢在不同Cl-浓度下的腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[14] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[15] 史伟宁,杨树峰,李京社. 不锈钢中诱发局部腐蚀的贫Cr区研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 281-290.