Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 765-772     CSTR: 32134.14.1005.4537.2023.150      DOI: 10.11902/1005.4537.2023.150
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
天然海水中硝酸盐的添加对EH40钢腐蚀的影响
吴佳佳1,2, 徐鸣1,2, 王鹏1,2, 张盾1,2()
1.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071
2.崂山实验室 海洋腐蚀与防护开放工作室 青岛 266237
Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater
WU Jiajia1,2, XU Ming1,2, WANG Peng1,2, ZHANG Dun1,2()
1.CAS Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2.Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao 266237, China
全文: PDF(12561 KB)   HTML
摘要: 

研究了天然海水中硝酸盐的添加对EH40钢腐蚀的影响。利用失重法、动电位极化曲线、SEM、CLSM、Raman、16S rRNA基因高通量测序等测试方法,表征了EH40钢在添加有不同浓度硝酸盐 (0、0.1、1、10、100 mmol/L) 的天然海水中浸泡12周的腐蚀速率、腐蚀形貌、腐蚀产物、生物膜形貌、生物膜微生物群落结构等,探讨了硝酸盐添加对EH40钢腐蚀的影响机制。结果表明:天然海水中硝酸盐的添加能够促进EH40钢的腐蚀,且促进作用具有浓度依赖性;同时,硝酸盐添加会加剧EH40钢的局部腐蚀程度。硝酸盐添加对EH40钢腐蚀的影响经由微生物起作用,其会改变生物膜微生物群落结构。

关键词 海水腐蚀微生物腐蚀硝酸盐EH40钢    
Abstract

The impact of nitrate addition on corrosion of EH40 steel in natural seawater was investigated. The corrosion rate, morphology and products of EH40 steel, as well as the formed biofilm morphology, and microbial communities on the steel immersed in natura seawater with various addition of nitrate (0, 0.1, 1, 10, and 100 mmol/L) for 12 weeks were studied by means of mass loss measurement, potentiodynamic polarization curves, SEM, CLSM, Raman spectroscopy, and examination of high throughput sequencing of 16S rRNA gene. It was found that corrosion of EH40 steel was promoted by nitrate addition, and the promotion degree was dependent on the contents of nitrate added. Meanwhile, localized corrosion was enhanced by nitrate addition. The impact of nitrate addition on the corrosion of EH40 steel is affected by microorganisms, correspondingly, which can change the structure of microbial communities of biofilms.

Key wordsseawater corrosion    microbiologically influenced corrosion    nitrate    EH40 steel
收稿日期: 2023-05-09      32134.14.1005.4537.2023.150
ZTFLH:  TG172  
基金资助:中国科学院A类先导专项(XDA23050104)
通讯作者: 张盾,E-mail: zhangdun@qdio.ac.cn,研究方向为海洋环境腐蚀与防护   
Corresponding author: ZHANG Dun, E-mail: zhangdun@qdio.ac.cn   
作者简介: 吴佳佳,1986 年出生,2013 年毕业于中国科学院海洋研究所,获理学博士学位。现就职于中国科学院海洋研究所,副研究员,硕士生导师。2014 年日本东京工业大学访问学者。吴佳佳博士主要研究方向为海洋环境微生物腐蚀机理。针对生物膜所致金属不均匀腐蚀研究存在的微观尺度认知匮乏、不同报道存在冲突等突出问题,解析生物膜的不均匀附着诱发金属不均匀腐蚀的机理。在微观相结构水平上揭示了细菌生物膜相选择性生长对双相不锈钢点蚀相间差异的作用机制,将海洋环境微生物腐蚀机理研究由宏观水平推进到微观相尺度水平。揭示了硝酸盐、群体感应信号分子等环境因子对生物膜结构与功能的调控所致微生物腐蚀变化的作用机制,从环境的角度推动了目前不同有关微生物腐蚀的报道之间存在矛盾问题的解决。先后主持国家自然科学基金青年项目、山东省重点研发计划等科研项目10 余项。发表期刊论文58 篇,其中以第一或通讯作者发表SCI 论文29 篇。获得2022 年度海洋科学技术奖二等奖 (排名第二) 等奖励。担任中国腐蚀与防护学会理事、《中国腐蚀与防护学报》青年编委等。2023 年获得中国腐蚀与防护学会杰出青年成就奖。

引用本文:

吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
WU Jiajia, XU Ming, WANG Peng, ZHANG Dun. Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 765-772.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.150      或      https://www.jcscp.org/CN/Y2023/V43/I4/765

图1  EH40钢在添加不同浓度硝酸盐海水中的腐蚀失重及平均腐蚀速率随时间的变化曲线
图2  EH40钢在添加不同浓度硝酸盐海水中浸泡12周后的动电位极化曲线及Icorr变化曲线
图3  EH40钢在添加不同浓度硝酸盐的海水中浸泡12周后的表面腐蚀产物宏观形貌
图4  EH40钢在添加不同浓度硝酸盐的海水中浸泡不同时间的表面腐蚀产物SEM形貌
图5  EH40钢在未添加硝酸盐的海水中浸泡不同时间去除腐蚀产物后的表面CLSM像
图6  EH40钢在添加不同浓度硝酸盐的海水中浸泡不同时间去除腐蚀产物后的表面CLSM图及对应最大蚀坑深度截面轮廓图
图7  EH40钢在添加不同浓度硝酸盐的海水中浸泡12周后表面腐蚀产物的Raman谱
图8  EH40钢在添加不同浓度硝酸盐的灭菌海水中腐蚀失重随时间的变化
图9  EH40钢在添加不同浓度硝酸盐的海水中浸泡不同时间的表面生物膜CLSM像
图10  EH40钢在添加不同浓度硝酸盐的海水中浸泡12周后表面微生物群落在属分类水平上的比较
1 Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4 + [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
1 王家明, 杨昊东, 杜 敏 等. B10铜镍合金在高浓度NH4 +污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
doi: 10.11902/1005.4537.2020.222
2 Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
2 马 刚, 顾艳红, 赵 杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 289
3 Davidova I, Hicks M S, Fedorak P M, et al. The influence of nitrate on microbial processes in oil industry production waters [J]. J. Ind. Microbiol. Biotechnol., 2001, 27: 80
doi: 10.1038/sj.jim.7000166
4 Bødtker G, Thorstenson T, Lilleb B L P, et al. The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems [J]. J. Ind. Microbiol. Biotechnol., 2008, 35: 1625
doi: 10.1007/s10295-008-0406-x
5 Yuk S, Kamarisima, Azam A H, et al. The contribution of nitrate-reducing bacterium Marinobacter YB03 to biological souring and microbiologically influenced corrosion of carbon steel [J]. Biochem. Eng. J., 2020, 156: 107520
doi: 10.1016/j.bej.2020.107520
6 Sun Z H, Wu J J, Zhang D, et al. Influence of nitrate concentrations on EH40 steel corrosion affected by coexistence of Desulfovibrio desulfuricans and Pseudomonas aeruginosa bacteria [J]. J. Oceanol. Limnol., 2022, 40: 1448
doi: 10.1007/s00343-021-1247-y
7 Liduino V S, Leoni G B, Sérvulo E F C, et al. Investigation of carbon steel corrosion by oilfield nitrate- and sulfate-reducing prokaryotes consortia in a hypersaline environment [J]. Environ. Sci. Pollut. Res., 2023, 30: 10830
doi: 10.1007/s11356-022-22896-y
8 Chen H Y, Wang W D, Du C A, et al. Study on the microbiological corrosion in oilfield reinjection water system inhibited by biological competition technology [J]. Ind. Water Treat., 2013, 33(6): 79
8 陈昊宇, 汪卫东, 杜春安 等. 生物竞争抑制油田回注水系统微生物腐蚀研究 [J]. 工业水处理, 2013, 33(6): 79
9 Nemati M, Jenneman G E, Voordouw G. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion [J]. Biotechnol. Prog., 2001, 17: 852
doi: 10.1021/bp010084v
10 Hubert C, Nemati M, Jenneman G, et al. Corrosion risk associated with microbial souring control using nitrate or nitrite [J]. Appl. Microbiol. Biotechnol., 2005, 68: 272
pmid: 15711941
11 Melchers R E, Jeffrey R J. Accelerated low water corrosion of steel piling in harbours [J]. Corros. Eng. Sci. Technol., 2013, 48: 496
doi: 10.1179/1743278213Y.0000000103
12 Duan J Z, Wu S R, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54: 22
doi: 10.1016/j.electacta.2008.04.085
13 Xue F, Wei X, Dong J H, et al. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34: 1349
doi: 10.1016/j.jmst.2017.11.004
14 Wan H X, Liu C L, Wang Z A, et al. Corrosion behavior of P110S oil casing steel in sulfur containing environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 371
14 万红霞, 刘重麟, 王子安 等. P110S油套管在微含硫环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 371
doi: 10.11902/1005.4537.2022.126
15 Froment F, Tournié A, Colomban P. Raman identification of natural red to yellow pigments: ochre and iron-containing ores [J]. J. Raman Spectrosc., 2008, 39: 560
doi: 10.1002/jrs.v39:5
16 Makkar N S, Casida Jr L E. Cupriavidus necator gen. nov., sp. nov.; a nonobligate bacterial predator of bacteria in Soil [J]. Int. J. Syst. Bacteriol., 1987, 37: 323
doi: 10.1099/00207713-37-4-323
17 Khan M A, Yadav S, Sharma R, et al. Augmentation of stimulated Pelomonas aquatica dispersible granules enhances remediation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) contaminated soil [J]. Environ. Technol. Innov., 2020, 17: 100594
doi: 10.1016/j.eti.2019.100594
18 Gevertz D, Telang A J, Voordouw G, et al. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine [J]. Appl. Environ. Microbiol., 2000, 66: 2491
doi: 10.1128/AEM.66.6.2491-2501.2000
19 Schwartz E, Henne A, Cramm R, et al. Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis [J]. J. Mol. Biol., 2003, 332: 369
doi: 10.1016/s0022-2836(03)00894-5 pmid: 12948488
20 Tuteja N. Mechanisms of high salinity tolerance in plants [J]. Methods Enzymol., 2007, 428: 419
21 Dorman S E G, Hoff B K, Reid T A, et al. The effect of Ralstonia pickettii on environmental fatigue crack growth of 7xxx series aluminum alloys [J]. Adv. Mater. Res., 2014, 891/892: 224
22 Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
doi: 10.1016/j.corsci.2017.08.007
23 Ress J, Monrrabal G, Díaz A, et al. Microbiologically influenced corrosion of welded AISI 304 stainless steel pipe in well water [J]. Eng. Fail. Anal., 2020, 116: 104734
doi: 10.1016/j.engfailanal.2020.104734
24 Wu J J, Gao J Y, Zhang D, et al. Microbial communities present on mooring chain steels with different copper contents and corrosion rates [J]. J. Oceanol. Limnol., 2020, 38: 378
doi: 10.1007/s00343-019-8366-8
[1] 张彭辉, 李显超, 仝宏涛, 张宇, 陈诚. 10CrNi3MoV钢在西太平洋深海环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1075-1080.
[2] 许萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[3] 马凯军, 王萌萌, 史振龙, 陈长风, 贾小兰. 温度对原油储罐罐底微生物腐蚀影响规律的研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[4] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[5] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[6] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[7] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[8] 吕美英, 李振欣, 杜敏, 万紫轩. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[9] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[10] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[11] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[12] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[13] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[14] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[15] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.