Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 1075-1080          DOI: 10.11902/1005.4537.2021.328
  研究报告 本期目录 | 过刊浏览 |
10CrNi3MoV钢在西太平洋深海环境下的腐蚀行为研究
张彭辉1(), 李显超1, 仝宏涛1, 张宇1, 陈诚2
1.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266101
2.中国人民解放军92118部队 舟山 316000
Corrosion Behavior of 10CrNi3MoV Steel in Deep-sea Environment of Western Pacific
ZHANG Penghui1(), LI Xianchao1, TONG Hongtao1, ZHANG Yu1, CHEN Cheng2
1. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
2. Unit 92118, People's Liberation Army, Zhoushan 316000, China
引用本文:

张彭辉, 李显超, 仝宏涛, 张宇, 陈诚. 10CrNi3MoV钢在西太平洋深海环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1075-1080.
Penghui ZHANG, Xianchao LI, Hongtao TONG, Yu ZHANG, Cheng CHEN. Corrosion Behavior of 10CrNi3MoV Steel in Deep-sea Environment of Western Pacific[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1075-1080.

全文: PDF(5543 KB)   HTML
摘要: 

以10CrNi3MoV钢为研究对象,在西太平洋海域不同深度下进行实海腐蚀试验,通过形貌观察、腐蚀失重计算、点蚀测量以及产物成分分析等方法对其腐蚀行为进行了研究。结果表明,10CrNi3MoV钢在西太平洋深海环境下的腐蚀形貌主要为点蚀,随深度增加表面点蚀密度和点蚀深度均增大;腐蚀速率随深度的增加先减小后略有增加,与深海溶解氧含量随深度变化规律一致。由于合金元素的添加导致深海环境局部腐蚀敏感性增大,相同条件下10CrNi3MoV钢耐蚀性劣于普通碳钢。10CrNi3MoV钢形成的晶态腐蚀产物主要为γ-FeOOH;随海水深度增加,晶态腐蚀产物相逐渐减少。

关键词 10CrNi3MoV钢西太平洋海水腐蚀深海    
Abstract

The corrosion behavior of 10CrNi3MoV steel was investigated, by means of morphologies observation, mass-loss calculation, pitting depth measurement and products composition analysis, after field exposure tests in different depths in western Pacific deep-sea environment. The main corrosion morphology of 10CrNi3MoV steel was pitting, and the growths of pitting density and pitting depth were observed as the test depth increased. The corrosion rate firstly decreased, and then slightly increased, in accordance with the variation of the dissolved oxygen concentration with depths. Due to the addition of alloying elements, the corrosion resistance of 10CrNi3MoV steel was inferior to that of ordinary carbon steel. γ-FeOOH was the main component in corrosion products, however, of which the amount of crystalline ones reduced with the increasing test depth.

Key words10CrNi3MoV steel    western pacific    seawater corrosion    deep-sea
收稿日期: 2021-11-19     
ZTFLH:  TG172.5  
作者简介: 张彭辉,男,1989年生,硕士生,工程师
图1  10CrNi3MoV钢在西太平洋海域不同深度腐蚀后的宏观形貌
图2  10CrNi3MoV钢在深海不同深度下的微观腐蚀形貌
图3  10CrNi3MoV钢在深海不同深度处的腐蚀速率
图4  10CrNi3MoV钢和Q235钢腐蚀速率、海水溶解氧及点蚀深度随深度变化
图5  不同海水深度的腐蚀产物的XRD谱图
图6  不同海水深度暴露形成的腐蚀产物红外谱图
[1] Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
[1] (周建龙, 李晓刚, 程学群 等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47)
[2] Ding K K, Fan L, Guo W M, et al. Deep sea corrosion behavior of typical metal materials and research hotspot discussion [J]. Equip. Environ. Eng., 2019, 16(1): 107
[2] (丁康康, 范林, 郭为民 等. 典型金属材料深海腐蚀行为规律与研究热点探讨 [J]. 装备环境工程, 2019, 16(1): 107)
[3] Guo W M, Sun M X, Qiu R, et al. Research progress on corrosion and aging of materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 313
[3] (郭为民, 孙明先, 邱日 等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 313)
[4] Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
[4] (孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508)
[5] Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
[5] (周宇, 张海兵, 杜敏 等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409)
[6] Lin Z H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
[6] (林朝晖, 明南希, 何川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307)
[7] Duan T G, Peng W S, Ding K K, et al. Long-term field exposure corrosion behavior investigation of 316L stainless steel in the deep sea environment [J]. Ocean Eng., 2019, 189: 106405
doi: 10.1016/j.oceaneng.2019.106405
[8] Ding K K, Guo W M, Qiu R, et al. Corrosion behavior of Q235 steel exposed in deepwater of South China Sea [J]. J. Mater. Eng. Perform., 2018, 27: 4489
doi: 10.1007/s11665-018-3553-x
[9] Duan T G, Xu L K, Ding K K, et al. Corrosion behaviour investigation of 460 low alloy steels exposed in the natural deep-sea environment [J]. Corros. Eng. Sci. Technol., 2019, 54: 485
doi: 10.1080/1478422X.2019.1619290
[10] Peng W S, Duan T G, Hou J, et al. Long-term corrosion behaviour of 1060 aluminium in deep-sea environment of South China Sea [J]. Corros. Eng. Sci. Technol., 2021, 56: 327
doi: 10.1080/1478422X.2020.1861732
[11] Peng W S, Hou J, Ding K K, et al. Corrosion behavior of 304 stainless steel in deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 145
[11] (彭文山, 侯健, 丁康康 等. 深海环境中304不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 145)
[12] Sun H J, Liu L, Li Y. Corrosion behavior of a high strength low alloy steel under hydrostatic pressure in deep ocean [J]. J. Electrochem., 2013, 19: 418
[12] (孙海静, 刘莉, 李瑛. 深海静水压力环境下低合金高强度钢腐蚀行为研究 [J]. 电化学, 2013, 19: 418)
[13] Hou J, Guo W M, Deng C L. Influences of deep sea environmental factors on corrosion behavior of carbon steel [J]. Equip. Environ. Eng., 2008, 5(6): 82
[13] (侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响 [J]. 装备环境工程, 2008, 5(6): 82)
[14] Dong F, Hu Y L, Zhao X, et al. Effect of hydrostatic pressure on corrosion behavior of 10CrNi3MoV steel [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 183
[14] (董赋, 胡裕龙, 赵欣 等. 静水压力对10CrNi3MoV钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 183)
[15] Sun F L, Li X G, Lu L, et al. Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of South China Sea [J]. Acta Metall. Sin., 2013, 49: 1219
doi: 10.3724/SP.J.1037.2013.00143
[15] (孙飞龙, 李晓刚, 卢琳 等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1219)
doi: 10.3724/SP.J.1037.2013.00143
[16] Cheng B Z, Qu S P, Dong L H, et al. Influence of hydrostatic pressure on the corrosion electrochemistry behaviors of 2205 steel in deep sea environment [J]. Corros. Prot., 2018, 39: 815
[16] (程柏璋, 屈少鹏, 董丽华 等. 深海环境中静水压对2205钢腐蚀电化学行为的影响 [J]. 腐蚀与防护, 2018, 39: 815)
[17] Zhang T, Yang Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915
doi: 10.1016/j.electacta.2009.02.010
[18] Wang X Y, Cao G L. Comparative studies on resistance against pitting corrosion of several seawater resistance steels [J]. Total Corros. Control, 2014, 28(2): 63
[18] (王小燕, 曹国良. 几种典型耐海水钢耐点蚀性能的比较 [J]. 全面腐蚀控制, 2014, 28(2): 63)
[19] Yang Y G, Cui Z Y, Chen J, et al. Influence of hydrostatic pressure on the pitting behavior of Fe-20Cr alloy [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 415
[19] (杨延格, 崔中雨, 陈杰 等. 静水压力对Fe-20Cr合金点蚀行为的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 415)
[20] Cao G L, Li G M, Chen S, et al. Comparison on pitting corrosion resistance of nickel and chromium in typical sea water resistance steels [J]. Acta Metall. Sin., 2010, 46: 748
doi: 10.3724/SP.J.1037.2010.00748
[20] (曹国良, 李国明, 陈珊 等. 典型耐海水腐蚀钢中Ni和Cr耐点蚀作用的比较 [J]. 金属学报, 2010, 46: 748)
doi: 10.3724/SP.J.1037.2009.00816
[21] Guo W M, Ding K K, Cheng W H, et al. Corrosion behaviors of two kinds of low alloy steels in deep-sea environments [J]. Equip. Environ. Eng., 2019, 16(4): 26
[21] (郭为民, 丁康康, 程文华 等. 两种低合金钢在深海环境下腐蚀行为规律研究 [J]. 装备环境工程, 2019, 16(4): 26)
[22] Peng X. Research on electrochemical corrosion behaviors and parameters of rusted carbon steel in marine environment [D]. Qingdao: Ocean University of China, 2013
[22] (彭欣. 海水环境中带锈碳钢腐蚀电化学行为及相关参数的研究 [D]. 青岛: 中国海洋大学, 2013)
[23] Xiong H X, Zhou L X. Synthesis of iron oxyhydroxides of different crystal forms and their roles in adsorption and removal of Cr(Ⅵ) from aqueous solutions [J]. Acta Petrol. Mineral., 2008, 27: 559
[23] (熊慧欣, 周立祥. 不同晶型羟基氧化铁 (FeOOH) 的形成及其在吸附去除Cr(Ⅵ) 上的作用 [J]. 岩石矿物学杂志, 2008, 27: 559)
[1] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[2] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[3] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[4] 孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[5] 彭文山, 段体岗, 马力, 辛永磊, 程文华, 刘少通. ZAlSi7Mg铝合金在深海环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 516-524.
[6] 段体岗, 李祯, 彭文山, 张彭辉, 丁康康, 郭为民, 侯健, 马力, 许立坤. 深海环境5A06铝合金腐蚀行为与表面特性[J]. 中国腐蚀与防护学报, 2023, 43(2): 352-358.
[7] 王腾宇, 张正贵, 陆卫中, 吴希革. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[8] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[9] 窦建业, 屈少鹏, 轩星雨. 铈离子修饰SiO2膜层在模拟深海条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 258-266.
[10] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[11] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[12] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[13] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[14] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[15] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.