Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 773-780     CSTR: 32134.14.1005.4537.2023.154      DOI: 10.11902/1005.4537.2023.154
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
微纳结构对阳极氧化铝超滑表面长期耐蚀性的影响机制研究
胡倩, 高佳仪, 郭瑞生, 史俊勤, 王显宗()
西北工业大学先进润滑与密封材料研究中心 西安 710072
Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide
HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong()
Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(7668 KB)   HTML
摘要: 

通过调控Al的阳极氧化工艺并填充润滑油,制备了3种不同微纳结构的超滑表面。采用扫描电子显微镜 (SEM)、接触角测量、电化学阻抗谱 (EIS) 测试和计算模拟等方法研究了阳极氧化铝 (AAO) 微纳结构对超滑表面疏水性、耐蚀性和稳定性的影响。结果表明,相比于纳米孔和纳米扩孔结构,纳米线结构超滑表面在模拟海水中持续浸泡240 d后的EIS阻抗模值 (|Z|0.01 Hz) 仍稳定在108 Ω∙cm2。理论分析显示,纳米线结构可储存更多的润滑油,并且致密线结构的阻拦效应及其与润滑油高的相互作用能显著减缓润滑油的流失,因而纳米线结构超滑表面表现出极为优异的耐蚀稳定性。

关键词 微纳结构阳极氧化铝超滑表面耐腐蚀性稳定性    
Abstract

Three double-layered lubricant infused surface (LIS) with different micro-nano structures (nanopores, enlarged nanopores, nanowires) on high purity Al-plates were prepared through anodizing for different times, and then filled with PAO oil. The effect of the structure of anodizing oxide films on the hydrophobicity, corrosion resistance, and stability of the prepared LISs were characterized by scanning electron microscopy (SEM), contact angle measurements, electrochemical impedance spectroscopy (EIS), and corrosion test in simulated seawater. The results showed that the |Z|0.01 Hz of nanowires-LIS was still stable at 108 Ω∙cm2 after immersion in 1 mol/L NaCl for 240 d, showing more stable in long-term immersion corrosion test rather than the nanopores- and enlarged nanopores-LISs. Theoretical analysis showed that the nanowires-structure could store more PAO oil, and the blocking effect of its compact structure and high interaction energy with the oil greatly slow down the loss of PAO, so that the nanowires-LIS showed improved corrosion resistance and stability.

Key wordsmicro-nano structure    anodizing anodized aluminum oxide (AAO)    lubricant infused surface (LIS)    corrosion resistance    stability
收稿日期: 2023-05-09      32134.14.1005.4537.2023.154
ZTFLH:  TG172  
基金资助:国家自然科学基金(51901188);中央高校基本科研业务费专项资金
通讯作者: 王显宗,E-mail: xianzong.wang@nwpu.edu.cn,研究方向为耐腐蚀涂层和合金、腐蚀磨损   
Corresponding author: WANG Xianzong, E-mail: xianzong.wang@nwpu.edu.cn   
作者简介: 胡倩,女,1999年生,硕士生
王显宗,1987 年出生,2018 年毕业于加拿大阿尔伯塔大学,获博士学位。现就职于西北工业大学,副教授, 博士生导师。王显宗博士主要研究方向为氢能、核工程材料的腐蚀与防护,围绕防护涂层、耐蚀合金开展 了系列研究。开发了C/Ti 耐腐蚀导电涂层应用于氢燃料电池,已通过应用单位性能验证,目前正开发商用 的C/Ti 金属双极板。研发了两种单件重量超过800 kg、耐蚀性能优异锆合金,推动了国家大规模乏燃料 (辐照核燃料) 后处理锆合金溶解器的建设。开发了高流速、高温铅铋冲刷腐蚀测试装置,温度和流速等参 数指标处于国际领先水平,促进了我国第四代核能铅冷快堆冲刷腐蚀装置的建设。先后主持国家国防科 工局后处理专项子课题、国家自然科学基金青年项目等8 个纵向项目和4 个横向项目。在Corrosion Science 等期刊发表20 余篇。兼任中国腐蚀与防护学会磨蚀与防护技术专委会、缓蚀剂与水处理专委会委员,中国海洋湖藻学会 海洋腐蚀与污损专委会副秘书长,同时兼任《中国腐蚀与防护学报》、《中南大学学报 (英文版)》、《矿物冶金和材料学报 (英文 版)》和《工程科学学报》等中英文期刊青年编辑。2023 年获得中国腐蚀与防护学会杰出青年成就奖。

引用本文:

胡倩, 高佳仪, 郭瑞生, 史俊勤, 王显宗. 微纳结构对阳极氧化铝超滑表面长期耐蚀性的影响机制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong. Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 773-780.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.154      或      https://www.jcscp.org/CN/Y2023/V43/I4/773

图1  涂层制备流程图
图2  不同结构AAO模板的SEM图
图3  超疏水和超滑表面的接触角和滑动角
图4  新鲜超疏水和超滑表面的电化学阻抗谱
图5  不同结构超滑表面不同时间浸泡后的电化学阻抗谱
图6  不同结构超滑表面长时间浸泡后的|Z|0.01 Hz变化曲线
图7  超滑表面在浸泡后的接触角和滑动角
图8  超滑表面在浸泡前和浸泡后的SEM图
图9  AAO模板填充润滑油模拟结果
图10  超滑表面相互作用能
图11  超滑表面长期浸泡中耐蚀性变化的原理示意图
1 Zhang F, Chen S G, Dong L H, et al. Preparation of superhydrophobic films on titanium as effective corrosion barriers [J]. Appl. Surf. Sci., 2011, 257: 2587
doi: 10.1016/j.apsusc.2010.10.027
2 Wang P, Zhang D, Qiu R, et al. Super-hydrophobic film prepared on zinc as corrosion barrier [J]. Corros. Sci., 2011, 53: 2080
doi: 10.1016/j.corsci.2011.02.025
3 Ren J D, Gao R J, Zhang Y, et al. Fabrication of amphiphobic surface of pipeline steel by acid etching and its anti-corrosion properties [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 233
3 任继栋, 高荣杰, 张 宇 等. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 233
doi: 10.11902/1005.4537.2016.017
4 Qiu R, Zhang D, Wang P. Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition [J]. Corros. Sci., 2013, 66: 350
doi: 10.1016/j.corsci.2012.09.041
5 Wu D Q, Zhang D W, Liu B, et al. Research progress for design and fabrication of LIS/SLIPS [J]. Surf. Technol., 2019, 48(1): 90
5 吴德权, 张达威, 刘 贝 等. 超滑表面(LIS/SLIPS)的设计与制备研究进展 [J]. 表面技术, 2019, 48(1): 90
6 Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity [J]. Nature, 2011, 477: 443
doi: 10.1038/nature10447
7 Yang S S, Qiu R, Song H Q, et al. Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application [J]. Appl. Surf. Sci., 2015, 328: 491
doi: 10.1016/j.apsusc.2014.12.067
8 Yang Z, Liu X P, Tian Y L. A contrastive investigation on anticorrosive performance of laser-induced super-hydrophobic and oil-infused slippery coatings [J]. Prog. Org. Coat., 2020, 138: 105313
9 Shi Z Q, Xiao Y M, Qiu R, et al. A facile and mild route for fabricating slippery liquid-infused porous surface (SLIPS) on CuZn with corrosion resistance and self-healing properties [J]. Surf. Coat. Technol., 2017, 330: 102
doi: 10.1016/j.surfcoat.2017.09.053
10 Shi Z Q, Ouyang Y B, Qiu R, et al. Bioinspired superhydrophobic and oil-infused nanostructured surface for cu corrosion inhibition: A comparison study [J]. Prog. Org. Coat., 2019, 131: 49
11 Wu D Q, Ma L W, Zhang F, et al. Durable deicing lubricant-infused surface with photothermally switchable hydrophobic/slippery property [J]. Mater. Des., 2020, 185: 108236
doi: 10.1016/j.matdes.2019.108236
12 Ho J Y, Rabbi K F, Sett S, et al. Dropwise condensation of low surface tension fluids on lubricant-infused surfaces: Droplet size distribution and heat transfer [J]. Int. J. Heat Mass Transfer, 2021, 172: 121149
doi: 10.1016/j.ijheatmasstransfer.2021.121149
13 Wang P, Lu Z, Zhang D. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria [J]. Corros. Sci., 2015, 93: 159
doi: 10.1016/j.corsci.2015.01.015
14 Emelyanenko K A, Emelyanenko A M, Boinovich L B. Laser obtained superhydrophobic state for stainless steel corrosion protection, a review [J]. Coatings, 2023, 13: 194
doi: 10.3390/coatings13010194
15 Yang C J, Tong Y C, Li B Y, et al. The effect of high temperature annealing on surface wettability, mechanical and chemical properties of laser ablated nitinol surface [J]. Opt. Laser Technol., 2023, 161: 109108
doi: 10.1016/j.optlastec.2023.109108
16 Yuan J, Yuan R, Wang J H, et al. Fabrication and corrosion resistance of phosphate/ZnO multilayer protective coating on magnesium alloy [J]. Surf. Coat. Technol., 2018, 352: 74
doi: 10.1016/j.surfcoat.2018.07.090
17 Lee J, Shin S, Jiang Y H, et al. Oil-impregnated nanoporous oxide layer for corrosion protection with self-healing [J]. Adv. Funct. Mater., 2017, 27: 1606040
doi: 10.1002/adfm.v27.15
18 Song T T, Liu Q, Liu J Y, et al. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property [J]. Appl. Surf. Sci., 2015, 355: 495
doi: 10.1016/j.apsusc.2015.07.140
19 Muschi M, Brudieu B, Teisseire J, et al. Drop impact dynamics on slippery liquid-infused porous surfaces: Influence of oil thickness [J]. Soft Matter, 2018, 14(7): 1100
doi: 10.1039/c7sm02026k pmid: 29333557
20 Sett S, Yan X, Barac G, et al. Lubricant-infused surfaces for low-surface-tension fluids: Promise versus reality [J]. ACS Appl. Mater. Interfaces, 2017, 9: 36400
doi: 10.1021/acsami.7b10756
21 Li Y Q, Si W T, Gao R J. Preparation of superamphiphobic surface on al-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 966
21 李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 966
doi: 10.11902/1005.4537.2021.339
22 Zhang B B, Zhao X, Li Y T, et al. Fabrication of durable anticorrosion superhydrophobic surfaces on aluminum substrates via a facile one-step electrodeposition approach [J]. RSC Adv., 2016, 6(42): 35455
doi: 10.1039/C6RA05484F
23 Wu W C, Wang X L, Wang D A, et al. Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids [J]. Chem. Commun., 2009, (9): 1043
24 Guo R S, Hu H Y, Liu Z L, et al. Highly durable hydrophobicity in simulated space environment [J]. RSC Adv., 2014, 4: 28780
doi: 10.1039/C4RA02552K
[1] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[2] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[3] 张而耕, 杨磊, 杨虎, 梁丹丹, 陈强, 周琼, 黄彪. 热喷涂Fe基非晶涂层的耐腐蚀性的研究及优化[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[4] 张媛, 张弦, 陈思雨, 李腾, 刘静, 吴开明. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[5] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[6] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[7] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[8] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[9] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[10] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[11] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[13] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[14] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[15] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.