Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 911-921     CSTR: 32134.14.1005.4537.2022.269      DOI: 10.11902/1005.4537.2022.269
  研究报告 本期目录 | 过刊浏览 |
基于PDM304不锈钢钝化膜生长动力学研究
毛飞雄1(), 周羽婷2, 姚文清2, 沈翔3, 肖龙3, 李明辉3
1.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室 宁波 315201
2.东北大学冶金学院 沈阳 110819
3.宁波市杭州湾大桥发展有限公司 宁波 315201
Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model
MAO Feixiong1(), ZHOU Yuting2, YAO Wenqing2, SHEN Xiang3, XIAO Long3, LI Minghui3
1.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2.School of Metallurgy, Northeastern University, Shenyang 110819, China
3.Ningbo Hangzhou Bay Bridge Development Co. LTD, Ningbo 315201, China
全文: PDF(4107 KB)   HTML
摘要: 

研究了304不锈钢在不同pH溶液中钝化膜生长规律。结果表明,304不锈钢表面生长的钝化膜为n型半导体,钝化膜内施主密度与施加的电位成反比 (除pH=13.4溶液);在钝化区内,稳态电流密度与施加的电位无关,而阻挡层的厚度随施加电位增加而增厚。采用点缺陷模型 (PDM) 对钝化区的电化学阻抗谱 (EIS) 数据进行分析计算,拟合出的参数可以用来预测样品随时间的腐蚀进程。计算结果表明,间隙阳离子是阻挡层的主要缺陷,缺陷的扩散系数约为10-19 cm2·s-1

关键词 304不锈钢钝化点缺陷模型电化学阻抗谱    
Abstract

The passivity of type 304 stainless steel in aqueous solution at different pH values has been assessed, and the acquired data suggest that the passive film formed on type 304 SS is n-type semiconducting, and the donor density within the passive film is inversely proportional to the applied voltage except those in pH=13.4 solution. The current density in steady-state is voltage-independent in the passive range, while the thickness of the barrier layer has a linear relationship with the applied voltage, which are satisfied with the statements of the point defect model (PDM). EIS data are analyzed with the PDM by optimizing the model on the data using genetic algorithm approach. In addition, the impedance data over the entire passive range can be described by the fitted parameters, which can be utilized to predict the corrosion evolution of the sample as a function of time. The results of the optimization indicate that interstitial cations are the dominant defects in the barrier layer and that the diffusivity of the defect is about 10-19 cm2·s-1.

Key words304 stainless steel    passivity    point defect model    EIS
收稿日期: 2022-08-31      32134.14.1005.4537.2022.269
ZTFLH:  TG174  
基金资助:宁波市重点研发计划(2021Z079);中科院国际合作伙伴项目(174433KYSB20200006)
通讯作者: 毛飞雄,E-mail: maofeixiong@nimte.ac.cn,研究方向为海洋腐蚀与防护   
Corresponding author: MAO Feixiong, E-mail: maofeixiong@nimte.ac.cn   
作者简介: 毛飞雄,男,1986年生,副研究员

引用本文:

毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 911-921.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.269      或      https://www.jcscp.org/CN/Y2023/V43/I4/911

图1  PDM中假设的表示点缺陷产生和湮灭的界面反应
Reactionai / V-1bi / cm-1ciUnits of ki0
(1) m+VMχ'k1MM+νm+χe'α1(1-α)χγ-α1χK1 βχγ1S
(2) mk2Miχ++νm+χe'α2(1-α)χγ-α2χK2 βχγmolcm2s
(3) mk3MM+χ2VO+χe'α3(1-α)χγ-α3χK3 βχγmolcm2s
(4) MMk4Mδ++(δ-χ)e'α4αδγ-α4 βδγmolcm2s
(5) Miχ+k5Mδ++(δ-χ)e'α5αδγ-α5 βδγcms
(6) VO+H2Ok6OO+2H+2α6αγ-α6 βδγcms
(7) MOχ/2+χH+k7Mδ++χ2H2O+(δ-χ)e'α7α(δ-χ)γ-α7(δ-χ)βγmolcm2s
表1  界面反应的速率常数表达式ki=ki0eaiVebiLecipH中的系数
图2  304不锈钢在不同溶液中的动电位极化曲线
图3  304不锈钢在不同溶液中的稳态 (恒电位极化) 电流密度与电位及电流随时间的曲线
图4  304不锈钢在不同pH溶液中施加不同恒电位极化6 h后的Mott-Schottky曲线和阻挡层的施主密度
图5  304不锈钢在pH=1.4溶液中0.5 VSCE恒电位极化后的EIS和K-K变换曲线
图6  拟合阻抗数据的等效电路图
图7  304不锈钢在不同溶液中施加不同电位极化后的EIS图
Parameter0.3 / V0.4 / V0.5 / VStage optinization
Polarizability α0.450.450.44Second stage optimization

Transfer coeff.

α2

0.230.230.23Average of first stage optimization

Transfer coeff.

α3

0.660.660.66Average of first stage optimization

Transfer coeff.

α7

0.490.490.49Average of first stage optimization

Rate constant

k200 / mol·cm-2·s-1

4.67×10-134.67×10-134.67×10-13Average of first stage optimization

Rate constant

k300 / mol·cm-2·s-1

3.78×10-173.78×10-173.78×10-17Average of first stage optimization

Rate constant

k700 / mol·cm-2·s-1

6.16×10-156.16×10-156.16×10-15Average of first stage optimization
CPE-Y / S·s α ·cm-24.18×10-53.92×10-53.86×10-5Second stage optimization
CPE-α0.940.950.95Second stage optimization

Warburg coeff.

σ / Ω·cm2·s-0.5

3.03×1052.14×1051.56×105Second stage optimization

Electronic resistance

Re, h / Ω·cm2

7.82×1061.72×1079.93×1012Second stage optimization

Double layer capacitance

Cdl / F·cm-2

1.51×10-49.56×10-56.91×10-5Second stage optimization

Charge transfer resistance

Rct / Ω·cm2

1.75×1052.88×1054.22×10-5Second stage optimization
Strength of electric field ε / V·cm-12.03×1062.03×1062.03×106Average of first stage optimization
Kinetic order of H+n0.50.50.5Average of first stage optimization

Current density

Iss / nA·cm-2

16.1520.2424.56Second stage optimization

Thickness of barrier layer

Lss / nm

1.241.471.74Second stage optimization

Diffusivity of principal defect

D / cm2·s-1

1.34×10-188.64×10-196.43×10-19Second stage optimization
表2  304不锈钢在pH=1.4溶液中不同钝化膜形成电位下PDM最优化模型参数值
Parameter0.3 / V0.4 / V0.5 / VStage optinization
Polarizability α0.340.250.25Second stage optimization

Transfer coeff.

α2

0.230.230.23Average of first stage optimization

Transfer coeff.

α3

0.660.660.66Average of first stage optimization

Transfer coeff.

α7

0.490.490.49Average of first stage optimization

Rate constant

k200 / mol·cm-2·s-1

4.67×10-134.67×10-134.67×10-13Average of first stage optimization

Rate constant

k300 / mol·cm-2·s-1

3.78×10-173.78×10-173.78×10-17Average of first stage optimization

Rate constant

k700 / mol·cm-2·s-1

6.16×10-156.16×10-156.16×10-15Average of first stage optimization
CPE-Y / S·s α ·cm-27.34×10-53.53×10-54.14×10-5Second stage optimization
CPE-α110.94Second stage optimization

Warburg coeff.

σ / Ω·cm2·s-0.5

1.07×1046.91×1047.38×104Second stage optimization

Electronic resistance

Re, h / Ω·cm2

3.78×10127.07×10127.67×1012Second stage optimization

Double layer capacitance

Cdl / F·cm-2

3.14×10-56.99×10-51.13×10-4Second stage optimization

Charge transfer resistance

Rct / Ω·cm2

1.08×1063.37×1054.19×105Second stage optimization
Strength of electric field ε / V·cm-12.03×1062.03×1062.03×106Average of first stage optimization
Kinetic order of H+n0.50.50.5Average of first stage optimization

Current density

Iss / nA·cm-2

15.2213.415.66Second stage optimization

Thickness of barrier layer

Lss / nm

2.362.993.33Second stage optimization

Diffusivity of principal defect

D / cm2·s-1

1.85×10-105.45×10-194.66×10-19Second stage optimization
表3  304不锈钢在pH=5.4溶液中不同钝化膜形成电位下PDM最优化模型参数值
Parameter0 / V-0.1 / V-0.2 / VStage optinization
Polarizability α0.450.2826240.289249Second stage optimization

Transfer coeff.

α2

0.230.230.23Average of first stage optimization

Transfer coeff.

α3

0.660.660.66Average of first stage optimization

Transfer coeff.

α7

0.490.490.49Average of first stage optimization

Rate constant

k200 / mol·cm-2·s-1

4.67×10-134.67×10-134.67×10-13Average of first stage optimization

Rate constant

k300 / mol·cm-2·s-1

3.78×10-173.78×10-173.78×10-17Average of first stage optimization

Rate constant

k700 / mol·cm-2·s-1

6.16×10-156.16×10-156.16×10-15Average of first stage optimization
CPE-Y (S·s α ·cm-22.39×10-52.70×10-53.97×10-5Second stage optimization
CPE-α0.910.910.89Second stage optimization

Warburg coeff.

σ / Ω·cm2·s-0.5

8.48×1053.82×1056.28×105Second stage optimization

Electronic resistance

Re, h / Ω·cm2

1.00×10139.81×10129.99×1012Second stage optimization

Double layer capacitance

Cdl / F·cm-2

2.23×10-448.99×10-42.32×10-4Second stage optimization

Charge transfer resistance

Rct / Ω·cm2

1.18×1052.03×1046.02×104Second stage optimization
Strength of electric field ε / V·cm-12.03×1062.03×1062.03×106Average of first stage optimization
Kinetic order of H+n0.50.50.5Average of first stage optimization

Current density

Iss / nA·cm-2

13.939.918.62Second stage optimization

Thickness of barrier layer

Lss / nm

2.081.991.66Second stage optimization

Diffusivity of principal defect

D / cm2·s-1

2.32×10-181.08×10-181.34×10-18Second stage optimization
表4  304不锈钢在pH=9.4溶液中不同钝化膜形成电位下PDM最优化模型参数值
Parameter-0.2 / V-0.3 / V-0.4 / VStage optinization
Polarizability α0.3942210.4499730.45Second stage optimization

Transfer coeff.

α2

0.230.230.23Average of first stage optimization

Transfer coeff.

α3

0.660.660.66Average of first stage optimization

Transfer coeff.

α7

0.490.490.49Average of first stage optimization

Rate constant

k200 / mol·cm-2·s-1

4.67×10-134.67×10-134.67×10-13Average of first stage optimization

Rate constant

k300 / mol·cm-2·s-1

3.78×10-173.78×10-173.78×10-17Average of first stage optimization

Rate constant

k700 / mol·cm-2·s-1

6.16×10-156.16×10-156.16×10-15Average of first stage optimization
CPE-Y / S·s α ·cm-24.08×10-53.65×10-53.97×10-5Second stage optimization
CPE-α0.880.920.92Second stage optimization

Warburg coeff.

σ / Ω·cm2·s-0.5

3.99×1052.52×1052.26×105Second stage optimization

Electronic resistance

Re, h / Ω·cm2

8.28×10128.28×10127.42×1012Second stage optimization

Double layer capacitance

Cdl / F·cm-2

1.35×10-41.54×10-42.04×10-4Second stage optimization

Charge transfer resistance

Rct / Ω·cm2

2.25×1051.83×1051.24×105Second stage optimization
Strength of electric field ε / V·cm-12.03×1062.03×1062.03×106Average of first stage optimization
Kinetic order of H+n0.50.50.5Average of first stage optimization

Current density

Iss / nA·cm-2

1.150.930.74Second stage optimization

Thickness of barrier layer

Lss / nm

2.392.151.93Second stage optimization

Diffusivity of principal defect

D / cm2·s-1

5.21×10-181.54×10-187.30×10-19Second stage optimization
表5  304不锈钢在pH=13.4溶液中不同钝化膜形成电位下PDM最优化模型参数值
1 Gai X P, Lei L, Cui Z Y. Pitting corrosion behavior of 304 stainless steel in simulated concrete pore solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 646
1 盖喜鹏, 雷 黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 646
doi: 10.11902/1005.4537.2020.238
2 Liu X Y, Zhao Y Z, Zhang H, et al. Effect of chloride concentration in a simulated concrete pore solution on metastable pitting of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 195
2 刘欣怡, 赵亚州, 张 欢 等. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 195
doi: 10.11902/1005.4537.2020.020
3 Li N, Li Y, Wang S G, et al. Electrochemical corrosion behavior of nanocrystallized bulk 304 stainless steel [J]. Electrochim. Acta, 2006, 52: 760
doi: 10.1016/j.electacta.2006.06.023
4 Yang S F, Macdonald D D. Theoretical and experimental studies of the pitting of type 316L stainless steel in borate buffer solution containing nitrate ion [J]. Electrochim. Acta, 2007, 52: 1871
doi: 10.1016/j.electacta.2006.07.052
5 Nicic I, Macdonald D D. The passivity of Type 316L stainless steel in borate buffer solution [J]. J. Nucl. Mater., 2008, 379: 54
doi: 10.1016/j.jnucmat.2008.06.014
6 Zhang Y C, Macdonald D D, Urquidi-Macdonald M, et al. Passivity breakdown on AISI Type 403 stainless steel in chloride-containing borate buffer solution [J]. Corros. Sci., 2006, 48: 3812
doi: 10.1016/j.corsci.2006.01.009
7 Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films: I. Film growth kinetics [J]. J. Electrochem. Soc., 1981, 128: 1187
doi: 10.1149/1.2127591
8 Lin L F, Chao C Y, Macdonald D D. A point defect model for anodic passive films: II. Chemical breakdown and pit initiation [J]. J. Electrochem. Soc., 1981, 128: 1194
doi: 10.1149/1.2127592
9 Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films: III. Impedance response [J]. J. Electrochem. Soc., 1982, 129: 1874
doi: 10.1149/1.2124318
10 Macdonald D D, Smedley S I. An electrochemical impedance analysis of passive films on nickel (111) in phosphate buffer solutions [J]. Electrochim. Acta, 1990, 35: 1949
doi: 10.1016/0013-4686(90)87104-A
11 Urquidi-Macdonald M, Real S, Macdonald D D. Application of Kramers-Kronig transforms in the analysis of electrochemical impedance data: II. Transformations in the complex plane [J]. J. Electrochem. Soc., 1986, 133: 2018
doi: 10.1149/1.2108332
12 Macdonald D D. Point defect model of the passive state [A]. MacdonaldJ R, BarsukovE. Impedance Spectroscopy Theory, Experiment, and Applications [M]. 2nd ed., New York: Wiley-Interscience, 2005: 382
13 Sharifi-Asl S, Taylor M L, Lu Z J, et al. Modeling of the electrochemical impedance spectroscopic behavior of passive iron using a genetic algorithm approach [J]. Electrochim. Acta, 2013, 102: 161
doi: 10.1016/j.electacta.2013.03.143
14 Macdonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc., 1992, 139: 3434
doi: 10.1149/1.2069096
15 Hakiki N E, Da Cunha Belo M, Simões A M P, et al. Semiconducting properties of passive films formed on stainless steels: influence of the alloying elements [J]. J. Electrochem. Soc., 1998, 145: 3821
doi: 10.1149/1.1838880
16 Di Paola A. Semiconducting properties of passive films on stainless steels [J]. Electrochim. Acta, 1989, 34: 203
doi: 10.1016/0013-4686(89)87086-0
17 Stimming U, Schultze J W. The capacity of passivated iron electrodes and the band structure of the passive layer [J]. Ber. Bunsenges. Phys. Chem., 1976, 80: 1297
doi: 10.1002/bbpc.v80:12
18 Gaben F, Vuillemin B, Oltra R. Influence of the chemical composition and electronic structure of passive films grown on 316L SS on their transient electrochemical behavior [J]. J. Electrochem. Soc., 2004, 151: B595
doi: 10.1149/1.1803562
19 Wagner C. Models for lattice defects in oxide layers on passivated iron and nickel [J]. Ber. Bunsenges. Phys. Chem., 1973, 77: 1090
20 Goossens A, Vazquez M, Macdonald D D. The nature of electronic states in anodic zirconium oxide films part 1: the potential distribution [J]. Electrochim. Acta, 1996, 41: 35
doi: 10.1016/0013-4686(95)00285-M
21 Macdonald D D, Sikora E, Sikora J. The kinetics of growth of the passive film on tungsten in acidic phosphate solutions [J]. Electrochim. Acta, 1998, 43: 2851
doi: 10.1016/S0013-4686(98)00026-7
22 Cheng X Q, Li X G, Yang L X, et al. Corrosion resistance of 316L stainless steel in acetic acid by EIS and Mott-Schottky [J]. J. Wuhan Univ. Technol.: Mater. Sci. Ed., 2008, 23: 574
doi: 10.1007/s11595-006-4574-0
23 Sikora E, Macdonald D D. Nature of the passive film on nickel [J]. Electrochim. Acta, 2002, 48: 69
doi: 10.1016/S0013-4686(02)00552-2
24 Macdonald D D, Urquidi-Macdonald M. Kramers-Kronig transformation of constant phase impedances [J]. J. Electrochem. Soc., 1990, 137: 515
doi: 10.1149/1.2086490
25 Sharifi-Asl S, Macdonald D D, Almarzooqi A, et al. A comprehensive electrochemical impedance spectroscopic study of passive carbon steel in concrete pore water [J]. J. Electrochem. Soc., 2013, 160: C316
doi: 10.1149/2.022308jes
26 Ferreira M G S, Dawson J L. Electrochemical studies of the passive film on 316 stainless steel in chloride media [J]. J. Electrochem. Soc., 1985, 132: 760
doi: 10.1149/1.2113954
27 Mohammadi F, Nickchi T, Attar M M, et al. EIS study of potentiostatically formed passive film on 304 stainless steel [J]. Electrochim. Acta, 2011, 56: 8727
doi: 10.1016/j.electacta.2011.07.072
28 Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
doi: 10.1016/j.apsusc.2011.06.077
29 Atrens A, Baroux B, Mantel M. The secondary passive film for type 304 stainless steel in 0.5 M H2SO4 [J]. J. Electrochem. Soc., 1997, 144: 3697
doi: 10.1149/1.1838078
[1] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[2] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[3] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[4] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[5] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[6] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[7] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[8] 张媛, 张弦, 陈思雨, 李腾, 刘静, 吴开明. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[9] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[10] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[11] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[12] 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[13] 赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[14] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[15] 张恒康, 黄峰, 徐云峰, 袁玮, 邱耀, 刘静. FeCrMn1.3NiAlx高熵合金显微组织演变及电化学钝化行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.