Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 922-928     CSTR: 32134.14.1005.4537.2022.279      DOI: 10.11902/1005.4537.2022.279
  研究报告 本期目录 | 过刊浏览 |
环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究
邹文杰, 丁立, 张雪姣, 陈均()
安徽工业大学化学与化工学院 马鞍山 243002
Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating
ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun()
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
全文: PDF(6131 KB)   HTML
摘要: 

利用合成的有机硅氧烷改性的阳离子型丙烯酸 (SMCWA) 乳液中的胺基能够固化环氧树脂的原理,在碳钢板表面制备耐腐蚀环氧树脂/SMCWA乳液复合涂层。利用激光纳米粒度仪对SMCWA乳液粒径进行表征,使用Fourier变换红外光谱仪 (FT-IR) 和扫描电子显微镜 (SEM) 对复合涂层进行结构和形貌分析,利用CuSO4点滴、电化学测试和中性盐雾实验研究复合涂层的耐蚀能力。结果表明,合成的SMCWA乳液粒径小,分布均匀。相较于空白SMCWA乳液涂层,环氧树脂/SMCWA乳液复合涂层的致密性和耐腐蚀性均得到增强,其中环氧树脂/SMCWA乳液质量比为9.5/0.5的复合涂层,CuSO4点滴时间提高了116 s,电化学阻抗提高了4倍,腐蚀电流密度下降了一个数量级,耐盐雾能力大幅增强。

关键词 碳钢板有机硅氧烷改性阳离子型丙烯酸乳液环氧树脂防腐性能    
Abstract

Based on the principle that the amine group in the synthesized organosiloxane-modified cationic acrylic (SMCWA) latex can cure epoxy resin, the corrosion-resistant epoxy resin/SMCWA latex composite coating were prepared on the surface of carbon steel plate. The SMCWA latex was characterized by laser nanometer particle size analyzer. The structure and morphology of the composite coatings were analyzed by FT-IR and SEM. The corrosion resistance of the composite coating was studied by copper sulfate spot test, electrochemical test and neutral salt spray test. The results show that the synthesized stable SMCWA latex has small particle size and uniform particle size distribution. Compared with the blank SMCWA latex coating, the compactness and corrosion resistance of the epoxy resin/SMCWA latex composite coating have been greatly enhanced. When the composite coating prepared with the mass ratio of epoxy resin to SMCWA is 9.5/0.5, as a result, the life-time of copper sulfate corrosion resistance is increased by 116 s; the AC impedance is increased by 4 times, and the corrosion current density is decreased by an order of magnitude in 3.5%NaCl; and the neutral salt spray resistance is also greatly enhanced for the prepared composite coating.

Key wordscarbon steel plate    organosiloxane modification    cationic acrylic emulsion    epoxy resin    corrosion resistance
收稿日期: 2022-09-09      32134.14.1005.4537.2022.279
ZTFLH:  TQ174.4  
基金资助:国家自然科学基金(U1460106)
通讯作者: 陈均,E-mail: junchen@ahut.edu.cn,研究方向为金属表面处理   
Corresponding author: CHEN Jun, E-mail: junchen@ahut.edu.cn   
作者简介: 邹文杰,男,1993年生,硕士生

引用本文:

邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 922-928.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.279      或      https://www.jcscp.org/CN/Y2023/V43/I4/922

图1  SMCWA 乳液中乳胶粒子的粒径大小和分布
图2  SMCWA乳液中乳胶粒子的Zeta电位
图3  SMCWA乳液与环氧树脂固化前后的红外光谱图
图4  不同比例SMCWA乳液/环氧树脂复合涂层的SEM图
图5  不同比例SMCWA乳液/环氧树脂复合涂层的水接触角图
图6  不同比例SMCWA乳液/环氧树脂复合涂层的附着力图
图7  不同比例SMCWA乳液/环氧树脂复合涂层的EIS图
图8  SMCWA乳液/环氧树脂复合涂层EIS拟合等效电路图
SMCWA emulsion / Epoxy ratioRs / Ω·cm2Rc / Ω·cm2CPEc / Ω·cm-2·s-nn1Rct / Ω·cm2CPEdl / Ω·cm-2·s-nn2
10/026.187001.098×10-60.6948092217.667×10-50.62230
9/122.4124347.0823×10-80.83892212841.1987×10-50.70538
9.25/0.7524.7159006.7149×10-80.86988348761.1078×10-50.80804
9.5/0.522.6396803.5246×10-80.92514420081.6133×10-60.90489
9.75/0.2526.1222792.603×10-70.81547192613.8761×10-50.65058
表1  不同比例SMCWA乳液/环氧树脂复合涂层的EIS拟合结果
图9  不同比例SMCWA乳液/环氧树脂复合涂层的Tafel极化曲线
SMCWA emulsion/epoxy ratioEcorr / VIcorr / 10-7 A·cm-2
10/0-0.58819.78
9/1-0.57213.88
9.25/0.75-0.56910.38
9.5/0.5-0.5275.926
9.75/0.25-0.57314.78
表2  不同比例SMCWA乳液/环氧树脂复合涂层的腐蚀参数
图10  空白以及SMCWA乳液/环氧树脂比例为9.5/0.5的涂层中性盐雾实验不同时间后的表面形貌
1 Mohamed M G, Ahmed N M, Mohamed W S, et al. Novel water-based coatings of acrylic-polyurethane reinforced with mixed metal pigment for oil and gas pipelines protection [J]. Prog. Org. Coat., 2020, 149: 105941
2 Bastidas D M. Corrosion and protection of metals [J]. Metals, 2020, 10: 458
doi: 10.3390/met10040458
3 Park H W, Park J W, Lee J H, et al. Property modification of a silicone acrylic pressure-sensitive adhesive with oligomeric silicone urethane methacrylate [J]. Eur. Polym. J., 2019, 112: 320
doi: 10.1016/j.eurpolymj.2019.01.021
4 Wang G Y, Zhou Z H, Zhang X, et al. Synthesis of novel waterborne silicone modified acrylic sealant and its corrosion resistance in Fe-based amorphous coatings [J]. Prog. Org. Coat., 2022, 170: 106950
5 Su H J, Cai Z C, Lv Z W, et al. Synthesis of water-based cationic polyacrylate copolymer emulsion by RAFT polymerization and its application as an inkjet printing agent [J]. Pigm. Resin Technol., 2020, 49: 401
doi: 10.1108/PRT-04-2020-0029
6 Ji S, Gui H G, Guan G W, et al. Molecular design and copolymerization to enhance the anti-corrosion performance of waterborne acrylic coatings [J]. Prog. Org. Coat., 2021, 153: 106140
7 Ji S, Gui H G, Guan G W, et al. A multi-functional coating based on acrylic copolymer modified with PDMS through copolymerization [J]. Prog. Org. Coat., 2021, 156: 106254
8 Wu Y M, Zhu C C, Yanchen Z, et al. A type of silicone modified styrene-acrylate latex for weatherable coatings with improved mechanical strength and anticorrosive properties [J]. React. Funct. Polym., 2020, 148: 104484
doi: 10.1016/j.reactfunctpolym.2020.104484
9 Chen C D, Dong S G, Hou R Q, et al. Insight into the anti-corrosion performance of electrodeposited silane/nano-CeO2 film on carbon steel [J]. Surf. Coat. Technol., 2017, 326: 183
doi: 10.1016/j.surfcoat.2017.06.031
10 Petrunin M A, Gladkikh N A, Maleeva M A, et al. Improving the anticorrosion characteristics of polymer coatings in the case of their modification with compositions based on organosilanes [J]. Prot. Met. Phys. Chem. Surf., 2021, 57: 374
doi: 10.1134/S2070205121020076
11 Kozakiewicz J, Trzaskowska J, Domanowski W, et al. Studies on synthesis and characterization of aqueous hybrid silicone-acrylic and acrylic-silicone dispersions and coatings. Part I [J]. Coatings, 2019, 9: 25
doi: 10.3390/coatings9010025
12 Ma C P, Li Y Z, Zhan S Y, et al. Synthesis and characterization of polyacrylate composite and its application in superhydrophobic coating based on silicone-modified Al2O3 [J]. Polym. Bull., 2022, 79: 5279
doi: 10.1007/s00289-021-03741-7
13 Ma C P, Li Y Z, Zhang J, et al. Preparation and characterization of polyacrylate composite and its application in superhydrophobic coating based on silicone-modified ZnO [J]. J. Coat. Technol. Res., 2021, 18: 415
doi: 10.1007/s11998-020-00411-7
14 Rodrigues Peruchi A B, Zuchinali F F, Bernardin A M. Development of a water-based acrylic paint with resistance to efflorescence and test method to determine the appearance of stains [J]. J. Build. Eng., 2021, 35: 102005
15 Yan X X, Peng W W, Qian X Y. Effect of water-based acrylic acid microcapsules on the properties of paint film for furniture surface [J]. Appl. Sci., 2021, 11: 7586
doi: 10.3390/app11167586
16 Wu Q S, Ma H, Chen Q J, et al. Effect of silane modified styrene-acrylic emulsion on the waterproof properties of flue gas desulfurization gypsum [J]. Constr. Build. Mater., 2019, 197: 506
doi: 10.1016/j.conbuildmat.2018.11.185
17 Zhao W T, Shao T T, Chen X L, et al. Preparation and characterization of self-crosslinking acrylic emulsion with different fluorocarbon chain lengths [J]. Pigm. Resin Technol., 2022, 51: 535
doi: 10.1108/PRT-07-2021-0073
18 Rodrigues L D A, Guerrini L M, Oliveira M P. Thermal and mechanical properties of cationic starch-graft-poly (butyl acrylate-co-methyl methacrylate) latex film obtained by semi-continuous emulsion polymerization for adhesive application [J]. J. Therm. Anal. Calorim., 2021, 146: 143
doi: 10.1007/s10973-020-09915-1
19 Zhang Y F, Bei W K, Qin Z Y. Preparation and characterization of soap-free vinyl acetate/butyl acrylate copolymer latex [J]. Materials (Basel), 2020, 13: 865
doi: 10.3390/ma13040865
20 Dong W, Zhou L, Guo Y N, et al. Modification of styrene-acrylic emulsion by organic UV absorber in synergy with fluorine and silicon monomers for weatherable coatings [J]. J. Coat. Technol. Res., 2022, 19: 607
doi: 10.1007/s11998-021-00550-5
21 Chen X L, Cao S S, Zhao W T, et al. Preparation and characterization of self-crosslinking acrylate emulsion modified by divinyl silane [J]. J. Coat. Technol. Res., 2022, 19: 887
doi: 10.1007/s11998-021-00566-x
22 Aziz T, Ullah A, Fan H, et al. Recent progress in silane coupling agent with its emerging applications [J]. J. Polym. Environ., 2021, 29: 3427
doi: 10.1007/s10924-021-02142-1
23 Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
23 刘术辉, 刘 斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 16
doi: 10.11902/1005.4537.2021.021
24 Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
24 王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335
doi: 10.11902/1005.4537.2020.068
[1] 孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[2] 于芳, 王翔, 张昭. 纳米填料在环氧防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 220-230.
[3] 曹京宜, 臧勃林, 曹宝学, 李亮, 方志刚, 郑宏鹏, 刘莉, 王福会. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1009-1015.
[4] 戈成岳, 罗祥平, 王静, 段继周, 王宁, 侯保荣. 硅烷偶联剂 (KH550) 和羟基硅油共同改性环氧树脂及配制富镁底漆性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[5] 孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[6] 栾浩, 孟凡帝, 刘莉, 崔宇, 刘叡, 郑宏鹏, 王福会. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[7] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[8] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[10] 蔡光义,王浩伟,赵苇杭,董泽华. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[11] 张娟,刘自强,冯涛,温世峰,陈瑞卿. 碳纳米管含量对环氧树脂涂层性能的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[12] 崔明君,任思明,张广安,刘栓,赵海超,王立平,薛群基. 六方氮化硼掺杂水性环氧树脂耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
[13] 林海强, 柴柯, 吴进怡, 杨鹏鹏, 宋春蕾. 含碳纤维环氧树脂涂料在高压脉冲电场作用下的杀菌性能研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 438-446.
[14] 田惠文 李伟华 宗成中 侯保荣. 纳米SiO2改性环氧涂层的防腐性能[J]. 中国腐蚀与防护学报, 2009, 29(5): 365-370.
[15] 陈中华 唐英 余飞. 一种环保水性抗静电防腐蚀涂料的性能研究[J]. 中国腐蚀与防护学报, 2009, 29(2): 113-118.