Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 771-778    DOI: 10.11902/1005.4537.2021.232
  研究报告 本期目录 | 过刊浏览 |
Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为
薛芳(), 刘两雨, 谭龙
山东交通学院 船舶与港口工程学院 威海 264200
Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions
XUE Fang(), LIU Liangyu, TAN Long
Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
全文: PDF(3755 KB)   HTML
摘要: 

利用电化学测量技术、表面表征技术和失重实验研究了Q235低碳钢在同一溶解氧不同浓度NaHCO3溶液中的活化/钝化行为。研究表明,Q235钢在浸泡初期和后期,腐蚀行为显著不同,尤其是在低浓度NaHCO3溶液中,这与样品表面覆盖的腐蚀产物有关。在高溶解氧条件下,HCO3-浓度影响低碳钢的腐蚀动力学。当HCO3-浓度较低时,低碳钢腐蚀反应主要受电荷转移过程控制;而在高浓度NaHCO3溶液中,腐蚀反应则主要受扩散过程控制。HCO3-通过影响Q235钢表面腐蚀产物形态及致密度进而影响Q235钢的腐蚀速率。随HCO3-浓度的增加,腐蚀产物致密度增加,保护性增强,Q235钢腐蚀速率降低。

关键词 Q235钢HCO3-浓度活化/钝化腐蚀动力学腐蚀产物    
Abstract

The activation- and passivation-behavior of Q235 low carbon steel was investigated by means of mass loss measurement, electrochemical measurements, and surface characterization techniques. Results show that in NaHCO3 solutions, the corrosion behavior of low carbon steel in the initial stage was quite different from that in the last stage, especially in the solutions of low NaHCO3 concentrations, which may be related to the variation of corrosion products formed on the surface of the steel. HCO3- could influence the corrosion kinetics of Q235 steel in naturally aerated conditions. When the content of HCO3- was limited, the anodic/cathodic reactions were determined by charge transfer process, while by diffusion process in solutions with high concentrations of HCO3-. The corrosion rate of Q235 steel was affected by the morphology and compactness of corrosion products in NaHCO3 solutions with different HCO3- concentrations. High concentration of HCO3- was beneficial to the formation of compact corrosion products, which could diminish the corrosion rate of low carbon steel.

Key wordsQ235 low carbon steel    HCO3- concentrations    activation/passivation    corrosion dynamics    corrosion products
收稿日期: 2021-09-03     
ZTFLH:  TG174  
基金资助:山东交通学院博士启动基金(BS2018003)
通讯作者: 薛芳     E-mail: fxue12s@alum.imr.ac.cn
Corresponding author: XUE Fang     E-mail: fxue12s@alum.imr.ac.cn
作者简介: 薛芳,女,1989年生,博士,讲师

引用本文:

薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
Fang XUE, Liangyu LIU, Long TAN. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 771-778.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.232      或      https://www.jcscp.org/CN/Y2022/V42/I5/771

图1  Q235钢在不同浓度NaHCO3溶液中浸泡30 min和30 d的动电位极化曲线
图2  Q235钢在不同浓度NaHCO3溶液中浸泡30 d过程中开路电位随时间的变化
图3  Q235钢在不同浓度NaHCO3溶液中浸泡30 d电化学阻抗随时间的变化
Immersion time / dRs / Ω·cm2Ydl / mS·s n ·cm-2nRct / Ω·cm2
1337.481.80×10-40.82778.87×103
2375.568.90×10-50.83092.71×105
3302.271.50×10-30.473231.26×103
5197.912.83×10-30.581441.14×103
8123.363.30×10-30.608571.33×103
1191.372.99×10-30.601782.61×103
2081.031.94×10-30.525532.69×103
2578.172.89×10-30.553795.21×103
3051.922.22×10-30.633093.78×103
表1  Q235钢在0.01 mol/L NaHCO3溶液中浸泡不同时间的电化学阻抗谱的拟合结果
Immersion time / dRs / Ω·cm2Ydl / mS·s n ·cm-2nRct / Ω·cm2Yw / mS·s n ·cm-2
143.268.5×10-50.84061.42×105---
250.635.5×10-50.87433.58×1042.09×10-7
350.954.0×10-50.90176.58×1048.78×10-7
549.183.5×10-50.91215.63×1041.11×10-6
846.763.3×10-50.91122.95×1041.64×10-7
1144.903.3×10-50.90461.98×1047.37×10-7
2040.489.3×10-50.85422.05×1033.51×10-4
2539.798.4×10-50.86291.96×1031.65×10-5
3037.071.1×10-40.83321.52×1031.95×10-3
表2  Q235钢在0.1 mol/L NaHCO3溶液中浸泡不同时间的电化学阻抗谱的拟合结果
Immersion time / dL / H·cm2Rs / Ω·cm2Ydl / mS·s n ·cm-2nRct / Ω·cm2Yw / mS·s n ·cm-2
11.19×10-68.5041.05×10-40.90452.81×1042.13×10-23
21.25×10-67.4398.18×10-50.92363.24×1046.66×10-17
31.25×10-67.9047.40×10-50.92952.99×1044.31×10-19
51.34×10-67.6527.18×10-50.93302.36×1045.93×10-18
81.38×10-65.2737.18×10-50.92972.26×1042.50×10-17
111.68×10-67.5397.32×10-50.92871.72×1041.89×10-17
151.39×10-66.1377.56×10-50.92361.37×1042.38×10-18
201.16×10-64.4608.46×10-50.90802.52×1041.31×10-17
251.40×10-64.9898.18×10-50.91674.50×1032.70×10-20
301.36×10-65.0338.84×10-50.91112.33×1036.52×10-24
表3  Q235钢在1 mol/L NaHCO3溶液中浸泡不同时间的电化学阻抗谱的拟合结果
图4  Q235钢在不同浓度NaHCO3溶液中电化学阻抗拟合等效电路
图5  Q235钢在不同浓度NaHCO3溶液中浸泡30 d后腐蚀产物形貌图
图6  0.01 mol/L[28]和0.1 mol/L[29] NaHCO3溶液中Fe-H2O-CO2体系电位-pH图
图7  Q235钢在0.01 mol/L和0.1 mol/L NaHCO3溶液中腐蚀机理示意图
1 King F. Container materials for the storage and disposal of nuclear waste [J]. Corrosion, 2013, 69: 986
doi: 10.5006/0894
2 Zheng M, Zhang Q C, Huang Y L, et al. Determination of representative ground-water for corrosion assessment of candidate materials used in Beishan area preselected for high-level radioactive waste disposal repository [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 185
2 郑珉, 张琦超, 黄彦良 等. 中国高放废物处置库甘肃北山预选区腐蚀研究用代表性地下水成分的确定 [J]. 中国腐蚀与防护学报, 2016, 36: 185
3 Wei Q L, Liu Y B, Yang B, et al. Corrosion behavior of Q235 carbon steel in simulated groundwater in Gansu Beishan area with high-strength γ irradiation [J]. At. Energy Sci. Technol., 2019, 53: 59
3 魏强林, 刘义保, 杨波 等. 强γ辐照下Q235碳钢在甘肃北山地区地下水模拟液中的腐蚀行为 [J]. 原子能科学技术, 2019, 53: 59
4 Guo Y H, Yang T X, Liu S F. Hydrogeological characteristics of Beishan preselected area, Gansu province for China's high-level radioactive waste repository [J]. Uran. Geol., 2001, 17: 184
4 郭永海, 杨天笑, 刘淑芬. 高放废物处置库甘肃北山预选区水文地质特征研究 [J]. 铀矿地质, 2001, 17: 184
5 He X H, Zhang W M, Xu W D, et al. Groundwater hydrochemistry and isotopic characteristics of Chuanjing preselected area for high level radioactive waste disposal repository [J]. World Nucl. Geosci., 2020, 37: 242
5 贺小黑, 张卫民, 徐卫东 等. 高放废物处置库川井预选区地下水水化学及同位素特征 [J]. 世界核地质科学, 2020, 37: 242
6 Guo Y H, Wang J, Lü C H, et al. Chemical characteristics of groundwater and water-rock interaction: modeling of the Yemaquan preselected area for China's high level radioactive waste repository [J]. Earth Sci. Front., 2005, 12(spec.1) : 117
6 郭永海, 王驹, 吕川河 等. 高放废物处置库甘肃北山野马泉预选区地下水化学特征及水-岩作用模拟 [J]. 地学前缘, 2005, 12(特刊1) : 117
7 Guo Y H, Wang J, Liu S F, et al. Groundwater chemical characteristics of the Yemaquan section-the preselected area for China's High-level radioactive waste repository [J]. Atom. Energy Sci. Technol., 2004, 38(suppl.1) : 143
7 郭永海, 王驹, 刘淑芬 等. 高放废物处置库预选区野马泉岩体地下水化学特征 [J]. 原子能科学技术, 2004, 38(): 143
8 Yang S, Wang Y L, Zhang Z C, et al. Form and distribution of Pu in underground water in Beishan, Gansu, and its influence factors [J]. Gold, 2014, 35(4): 75
8 杨森, 王永利, 张志程 等. 甘肃北山地下水中Pu的形态分布及影响因素 [J]. 黄金, 2014, 35(4): 75
9 Sun M, Chen T, Tian W Y, et al. Calculation and analysis of the solubility of Neptunium in Beishan well 51# groundwater [J]. J. Nucl. Radioche., 2011, 33: 71
9 孙茂, 陈涛, 田文宇 等. 镎在北山五一井水中的溶解度计算分析 [J]. 核化学与放射化学, 2011, 33: 71
10 Jiang T, Yao J, Wang B, et al. Solubility of Np(IV) in Beishan groundwater at different temperatures [J]. J. Nucl. Radioche., 2011, 33: 77
10 姜涛, 姚军, 王波 等. 不同温度下Np(IV) 在北山地下水中的溶解度 [J]. 核化学与放射化学, 2011, 33: 77
11 Liu Y M, Wang J, Cao S F, et al. A large-scale THMC experiment of buffer material for geological disposal of high level radioactive waste in China [J]. Rock Soil Mech., 2013, 34: 2756
11 刘月妙, 王驹, 曹胜飞 等. 中国高放废物地质处置缓冲材料大型试验台架和热-水-力-化学耦合性能研究 [J]. 岩土力学, 2013, 34: 2756
12 Thomas J G N, Nurse T J, Walker R. Anodic passivation of iron in carbonate solutions [J]. Br. Corros. J., 1970, 5: 87
doi: 10.1179/000705970798324829
13 Davies D H, Burstein G T. The effects of bicarbonate on the corrosion and passivation of iron [J]. Corrosion, 1980, 36: 416
14 Videm K, Koren A M. Corrosion, passivity, and pitting of carbon steel in aqueous solutions of HCO3 -, CO2, and Cl- [J]. Corrosion, 1993, 49: 746
doi: 10.5006/1.3316127
15 Mao X, Liu X, Revie R W. Pitting corrosion of pipeline steel in dilute bicarbonate solution with chloride ions [J]. Corrosion, 1994, 50: 651
doi: 10.5006/1.3293540
16 Vatankhah G, Drogowska M, Menard H, et al. Electrodissolution of iron in sodium sulfate and sodium bicarbonate solutions at pH8 [J]. J. Appl. Electrochem., 1998, 28: 173
doi: 10.1023/A:1003230725414
17 Eliyan F F, Alfantazi A. Mechanisms of corrosion and electrochemical significance of metallurgy and environment with corrosion of iron and steel in bicarbonate and carbonate solutions—A review [J]. Corrosion, 2014, 70: 880
doi: 10.5006/1213
18 Eliyan F F, Alfantazi A. Influence of temperature on the corrosion behavior of API-X100 pipeline steel in 1-bar CO2-HCO3 - solutions: an electrochemical study [J]. Mater. Chem. Phys., 2013, 140: 508
doi: 10.1016/j.matchemphys.2013.03.061
19 Zhou J L, Li X G, Du C W, et al. Anodic electrochemical behavior of X80 pipeline steel in NaHCO3 solution [J]. Acta Metall. Sin., 2010, 46: 251
19 周建龙, 李晓刚, 杜翠薇 等. X80管线钢在NaHCO3溶液中的阳极电化学行为 [J]. 金属学报, 2010, 46: 251
doi: 10.3724/SP.J.1037.2009.00470
20 Zhao Y, Liang P, Shi Y H, et al. Comparison of passive films on X100 and X80 pipeline steels in NaHCO3 solution [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 455
20 赵阳, 梁平, 史艳华 等. NaHCO3溶液中X100和X80管线钢钝化膜性能比较 [J]. 中国腐蚀与防护学报, 2013, 33: 455
21 Wagner C, Traud W. " On the Interpretation of corrosion processes through the superposition of electrochemical partial processes and on the potential of mixed electrodes," with a perspective by F. Mansfeld [J]. Corrosion, 2006, 62: 843
doi: 10.5006/1.3279894
22 Xue F, Wei X, Dong J H, et al. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34: 1349
doi: 10.1016/j.jmst.2017.11.004
23 Ma G J, Du M, Liu F G, et al. Corrosion regulation of G105 steel in different oxygen solution [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 108
23 马桂君, 杜敏, 刘福国 等. G105钻具钢在含有溶解氧条件下的腐蚀规律 [J]. 中国腐蚀与防护学报, 2008, 28: 108
24 Wen H L, Dong J H, Ke W, et al. Active/passive behavior of low carbon steel in deaerated bicarbonate solution [J]. Acta Metall. Sin., 2014, 50: 275
24 文怀梁, 董俊华, 柯伟 等. 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响 [J]. 金属学报, 2014, 50: 275
doi: 10.3724/SP.J.1037.2013.00497
25 Xu C C, Chi L, Hu G, et al. Influence of concentration of HCO3 - to anodic reaction of X70 steel [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 20
25 许淳淳, 池琳, 胡钢 等. HCO3 -浓度对X70钢阳极反应过程的影响 [J]. 中国腐蚀与防护学报, 2005, 25: 20
26 Gong K, Wu M, Zhang S. Effect of HCO3 - on stress corrosion cracking behavior of X90 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 727
26 宫克, 吴明, 张胜. HCO3 -对X90管线钢应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 727
27 Xue F. Corrosion behavior of Q235 low carbon steel in simulated geological disposal environment of HLW [D]. Hefei: University of Science and Technology of China, 2018
27 薛芳. Q235低碳钢在模拟高放废物深地质处置环境中的腐蚀行为 [D]. 合肥: 中国科学技术大学, 2018
28 Lu Y F, Dong J H, Ke W. Corrosion evolution of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2015, 31: 1047
doi: 10.1016/j.jmst.2014.10.013
29 Song X X, Huang S P, Wang C, et al. The initial corrosion behavior of carbon steel exposed to the coastal-industrial atmosphere in Hongyanhe [J]. Acta Metall. Sin., 2020, 56: 1355
29 宋学鑫, 黄松鹏, 汪川 等. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1355
30 Cao J Y, Fang Z G, Feng Y F, et al. Corrosion behavior of domestic galvanized steel in different water environment: reverse osmosis water and conditioned water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 178
30 曹京宜, 方志刚, 冯亚菲 等. 国产镀锌钢在不同水环境中的腐蚀行为: II反渗透水和调质水 [J]. 中国腐蚀与防护学报, 2021, 41: 178
[1] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[2] 伊璞, 侯利锋, 杜华云, 刘笑达, 贾建文, 李阳, 张威, 徐芳泓, 卫英慧. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[3] 王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍. 氮掺杂对碳纳米颗粒缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[4] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[5] 王家明, 杨昊东, 杜敏, 彭文山, 陈翰林, 郭为民, 蔺存国. B10铜镍合金在高浓度NH4+污染海水中腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[6] 陈土春, 向军淮, 江龙发, 熊剑, 白凌云, 徐勋虎, 徐鑫成. Q235钢在氧化性含Cl气氛中的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[7] 王军, 陈军君, 谢亿, 徐松, 刘兰兰, 吴堂清, 尹付成. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[8] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[9] 陈文, 黄德兴, 韦奉. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 376-382.
[10] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[11] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[12] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[13] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[14] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[15] 王帅星,杜楠,刘道新,肖金华,邓丹萍. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析[J]. 中国腐蚀与防护学报, 2019, 39(1): 18-28.