Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 903-910     CSTR: 32134.14.1005.4537.2022.272      DOI: 10.11902/1005.4537.2022.272
  研究报告 本期目录 | 过刊浏览 |
ADC12铝合金表面硅锆复合转化膜的研究
丁立, 邹文杰, 张雪姣, 陈均()
安徽工业大学化学与化工学院 马鞍山 243002
Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy
DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun()
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
全文: PDF(9457 KB)   HTML
摘要: 

通过化学转化法在ADC12铝合金表面制备出新型硅锆复合转化膜。利用硫酸铜点滴实验与极化曲线测试对胺基双硅烷含量进行优化,利用场发射扫描电镜 (FESEM) 对转化膜的微观形貌进行分析,采用Fourier变换红外光谱分析仪 (FT-IR) 与X射线光电子谱 (XPS) 研究了转化膜的结构与成分并对成膜过程进行了分析,利用电化学测试、中性盐雾实验研究转化膜的耐蚀性能。结果表明:60%胺基双硅烷转化膜的耐蚀性能最优。胺基双硅烷的引入明显改善了转化膜的均匀性和致密性。胺基双硅烷大大提升了转化膜的耐蚀性能。相较于锆转化膜,硅锆复合转化膜的容抗弧半径增加了3倍以上;低频阻抗值增加了3倍以上;耐盐雾时间提升了20倍以上。

关键词 ADC12铝合金胺基双硅烷硅锆复合转化膜耐腐蚀性能盐雾实验    
Abstract

A new type of Si-Zr composite conversion film was prepared on the surface of ADC12 aluminum alloy by chemical conversion method. The content of aminobissilane was optimized based on the results of copper sulfate dropping test and polarization curve measurement. The microstructure, chemical composition and crystallographic structure of the conversion film were characterized by means of field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The corrosion resistance of the passive film was studied by electrochemical test and neutral salt spray test. The results show that the introduction of aminobissilane can significantly improve the uniformity and compactness of the conversion film; thus aminobissilane greatly improves the corrosion resistance of conversion films; among others, the corrosion resistance of the conversion film with 60% aminobissilane is the best. Compared with the Zr conversion film, the capacitive reactance radius and the low frequency impedance value of the Si-Zr composite conversion film increase by more than 3 times respectively, and in consequence, the life-time of salt spray corrosion resistance increases by more than 20 times.

Key wordsADC12 aluminum alloy    aminobissilane    silicon-zirconium composite conversion film    corrosion resistance    salt spray test
收稿日期: 2022-09-05      32134.14.1005.4537.2022.272
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(U1460106)
通讯作者: 陈均,E-mail: junchen@ahut.edu.cn,研究方向为金属表面处理   
Corresponding author: CHEN Jun, E-mail: junchen@ahut.edu.cn   
作者简介: 丁立,男,1998年生,硕士生

引用本文:

丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 903-910.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.272      或      https://www.jcscp.org/CN/Y2023/V43/I4/903

图1  不同样品的极化曲线
SampleEcorr / VEpit / VΔE / VIcorr / (A·cm-2)
Blank-1.201-031.63×10-7
ZrCC-1.046-015.86×10-7
20Si-ZrCC-1.043-05.902×10-7
40Si-ZrCC-0.921-0.7660.1551.950×10-7
60Si-ZrCC-0.904-0.7270.1761.44×10-7
80Si-ZrCC-1.046-05.421×10-7
表1  不同样品的极化曲线数据
图2  转化膜的FT-IR谱图
图3  锆转化膜与硅锆复合转化膜的FESEM和硅锆复合转化膜的EDS谱
SampleAlCFNOSiZr
Zr film6.0257.678.13-26.39-1.79
Si-Zr film3.6473.080.980.7519.361.950.23
表2  不同转化膜的各个元素的原子百分含量 (atomic fraction / %)
图4  锆转化膜的XPS谱
图5  硅锆复合转化膜的XPS谱
图6  空白样、锆转化膜与硅锆复合转化膜的EIS谱
图7  转化膜电化学阻抗谱的拟合电路图
Sample

Rc

Ω·cm2

CPEc

F·cm-2

nc

CPEdl

F·cm-2

Rct

Ω·cm2

Blank---2.099×10-513.69
Zr film494661.094×10-50.8291.695×10-554226
Si-Zr film4190808.816×10-60.9089.500×10-6167750
表3  电化学阻抗谱拟合结果
图8  铝合金基体、锆转化膜和硅锆复合转化膜盐雾实验后的形貌
1 Xi K, Wu H, Zhou C L, et al. Improved corrosion and wear resistance of micro-arc oxidation coatings on the 2024 aluminum alloy by incorporation of quasi-two-dimensional sericite microplates [J]. Appl. Surf. Sci., 2022, 585: 152693
doi: 10.1016/j.apsusc.2022.152693
2 Gong Y B, Wang P, Xu Z X, et al. Effects of phytce acid additives on the characteristics of micro-arc oxidation coatings on 6061 aluminum alloy [J]. Surf. Technol., 2021, 50(12): 381
2 龚云柏, 王 平, 胥章鑫 等. 植酸添加剂对6061铝合金微弧氧化膜层性能的影响 [J]. 表面技术, 2021, 50(12): 381
3 Zhu W, Chen F R, Luo Y B, et al. Vanadium and tannic acid-based composite conversion coating for 6063 aluminum alloy [J]. Front. Mater., 2021, 8: 802468
doi: 10.3389/fmats.2021.802468
4 Carreira A F, Pereira A M, Vaz E P, et al. Alternative corrosion protection pretreatments for aluminum alloys [J]. J. Coat. Technol. Res., 2017, 14: 879
doi: 10.1007/s11998-017-9922-9
5 Qian X Z, Zhao W E, Zhan W, et al. Formation and corrosion resistance of a novel Co-Ti-Mo composite chromium-free chemical conversion coating on LY12 aluminum alloy [J]. Mater. Corros., 2022, 73: 710
6 Wang Y B, Huang Q Y, Zhou B T, et al. Corrosion protection of 6061 aluminum alloys by sol-gel coating modified with ZnLaAl-LDHs [J]. Coatings, 2021, 11: 478
doi: 10.3390/coatings11040478
7 Ye X L, Chen J. Study on passivation of ADC12 aluminum alloy by self-crosslinking cationic acrylic emulsion [J]. Surf. Technol., 2021, 50(8): 337
7 叶小乐, 陈 均. 自交联阳离子丙烯酸乳液对ADC12铝合金的钝化研究 [J]. 表面技术, 2021, 50(8): 337
8 Yang Y G, Cao J Y, Wang X Q, et al. Design and performance of Zr- and/or Ti-based chemical conversion coatings for light alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 387
8 杨延格, 曹京宜, 王兴奇 等. 轻合金锆/钛基转化膜的设计及性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 387
doi: 10.11902/1005.4537.2021.301
9 Liu N Y, Gao J G, Tong S, et al. Improvement in corrosion resistance of micro-arc oxidation coating on PVD Ti-coated aluminum alloy 7075 [J]. Int. J. Appl. Ceram. Technol., 2022, 19: 2556
10 Cao J Y, Fang Z G, Chen J H, et al. Preparation and properties of micro-arc oxide film with single dense layer on surface of 5083 aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 251
10 曹京宜, 方志刚, 陈晋辉 等. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 251
doi: 10.11902/1005.4537.2019.069
11 Li F Q, Zhao M H, Zhan Y, et al. Facile fabrication of novel superhydrophobic Al2O3/polysiloxane hybrids coatings for aluminum alloy corrosion protection [J]. Colloids Surf., 2022, 640A: 128444
12 Minhas B, Dino S, Huang L Y, et al. Active corrosion protection by epoxy coating on Li2CO3-pretreated anodized aluminum alloy 2024-T3 [J]. Front. Mater., 2022, 8: 804328
doi: 10.3389/fmats.2021.804328
13 Milošev I, Frankel G S. Review-conversion coatings based on zirconium and/or titanium [J]. J. Electrochem. Soc., 2018, 165(3): C127
doi: 10.1149/2.0371803jes
14 Peltier F, Thierry D. Review of Cr-free coatings for the corrosion protection of aluminum aerospace alloys [J]. Coatings, 2022, 12: 518
doi: 10.3390/coatings12040518
15 Becker M. Chromate-free chemical conversion coatings for aluminum alloys [J]. Corros. Rev., 2019, 37: 321
doi: 10.1515/corrrev-2019-0032
16 Peng D D, Wu J S, Yan X L, et al. The formation and corrosion behavior of a zirconium-based conversion coating on the aluminum alloy AA6061 [J]. J. Coat. Technol. Res., 2016, 13: 837
doi: 10.1007/s11998-016-9789-1
17 Cerezo J, Vandendael I, Posner R, et al. The effect of surface pre-conditioning treatments on the local composition of Zr-based conversion coatings formed on aluminium alloys [J]. Appl. Surf. Sci., 2016, 366: 339
doi: 10.1016/j.apsusc.2016.01.106
18 Zhang H H, Zhang X F, Zhao X H, et al. Preparation of Ti-Zr-based conversion coating on 5052 aluminum alloy, and its corrosion resistance and antifouling performance [J]. Coatings (Basel), 2018, 8: 397
19 Zhan W, Qian X Z, Gui B Y, et al. Preparation and corrosion resistance of titanium–zirconium–cerium based conversion coating on 6061 aluminum alloy [J]. Mater. Corros., 2020, 71: 419
doi: 10.1002/maco.201911193
20 Liao Z M, Chen L, Zhu W, et al. Rapid formation of titanium–zirconium-based conversion coating on aluminum alloy at low temperatures [J]. Electroplat. Finish., 2020, 39: 855
20 廖忠淼, 陈 龙, 祝 闻 等. 铝合金上低温钛锆转化膜快速成膜工艺 [J]. 电镀与涂饰, 2020, 39: 855
21 Khatoon H, Ahmad S. Vanadium pentoxide-enwrapped polydiphenylamine/polyurethane nanocomposite: high-performance anticorrosive coating [J]. ACS Appl. Mater. Interfaces, 2019, 11: 2374
doi: 10.1021/acsami.8b17861
22 Zou H, Wang Z. Poly(2-aminothiazole): An emerging functional polymer [J]. Prog. Org. Coat., 2021, 158: 106345
23 Ding Y K, Chen G M, Ni Z F, et al. Corrosion resistance of silane film modified by hexagonal boron nitride [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 864
23 丁玉康, 陈国美, 倪自丰 等. 六方氮化硼改性硅烷膜耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 864
doi: 10.11902/1005.4537.2020.176
24 Wang N, Li L, Sun X M, et al. Preparation of PTFE/Al2O3–13% TiO2 composite coating and its corrosion resistance [J]. Electrop. Finish., 2022, 41: 238
24 王 宁, 李 丽, 孙绪民 等. 聚四氟乙烯/Al2O3-13% TiO2复合涂层的制备及耐蚀性研究 [J]. 电镀与涂饰, 2022, 41: 238
25 Wen J Y, Song G H, Wei X Y, et al. Influence of Cr content on corrosion resistance of composite Ni/Ni-Cr/Ni-Cr-Al-Si films on Cu [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 638
25 温佳源, 宋贵宏, 韦小园 等. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 638
doi: 10.11902/1005.4537.2021.173
26 Zhang Y G, Chen Y L, Zhang Y, et al. The long-term corrosion performance and adhesion properties of 7B04 aluminum alloy/anodic film/epoxy primer system in acidic NaCl solution [J]. Mater. Corros., 2022, 73: 93
27 Zeng D P, Liu Z Y, Zou L H, et al. Corrosion resistance of epoxy coatings modified by bis-silane prepolymer on aluminum alloy [J]. Coatings, 2021, 11: 842
doi: 10.3390/coatings11070842
[1] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[2] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[3] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[4] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[5] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[6] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[7] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[8] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[9] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[10] 冯超, 彭碧草, 谢亿, 王军, 李明欢, 吴堂清, 尹付成. 0.1%NaHSO3盐雾条件下T91钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[11] 王思齐,祝郦伟,刘福春,韩恩厚,王震宇,钱洲亥. 磷酸对氯乙烯-丙烯酸共聚物带锈涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 281-286.
[12] 张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
[13] 王平,程英亮,张昭. Ni-SiC纳米复合镀层腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 371-376.
[14] 刘丽红,张子华,闫杰,苏少燕. 化学镀镍磷合金在海洋环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(5): 369-373.
[15] 林高用,杨伟,万迎春,唐鹏钧,张胜华. 微量稀土对HAl77-2铜合金组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 262-268.