Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 337-344     CSTR: 32134.14.1005.4537.2022.117      DOI: 10.11902/1005.4537.2022.117
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究
王通, 王巍()
中国海洋大学材料科学与工程学院 青岛 266100
Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process
WANG Tong, WANG Wei()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(6079 KB)   HTML
摘要: 

针对传统电化学分析技术不能完全反映有机涂层腐蚀电化学过程的问题,采用弛豫时间分布 (DRT) 技术分析电化学阻抗谱 (EIS),研究了聚二甲基硅氧烷 (PDMS) 涂层在长效防腐过程及“人工划伤-自修复”循环过程中的动态弛豫时间分布。结果表明:结合等效电路模型分析方法,DRT技术能够清晰地分析PDMS涂层电化学过程中总电化学阻抗的组成及各部分贡献率,并从理论方面阐明了EIS等效电路中各元件对应的弛豫时间归属问题。为腐蚀电化学机理研究提供了一种新的分析技术。

关键词 有机涂层电化学阻抗谱弛豫时间分布等效电路机理自修复    
Abstract

Traditional electrochemical analysis techniques cannot fully reflect the electrochemical process of organic coating corrosion. Hence, distribution of relaxation time (DRT) technique was adopted to fit the electrochemical impedance spectrum (EIS), meanwhile, the distribution of relaxation time of the long-term anticorrosion process of polydimethylsiloxane coatings without and with artificial scratches was investigated, in other word, the later one experienced self-healing cycles. The results show that the function of the EIS itself as a whole and the contribution proportion of each element of the EIS of the coating during the corrosion process can be clearly analyzed via the DRT technique combined with equivalent circuit model analysis. Meanwhile, the corresponding relaxation time of each element in EIS equivalent circuit was discussed theoretically. This paper provides a new analytical technique for corrosion electrochemical mechanism study.

Key wordsorganic coating    electrochemical impedance spectroscopy    distribution of relaxation time    equivalent circuit    mechanism    self-healing
收稿日期: 2022-04-18      32134.14.1005.4537.2022.117
ZTFLH:  TG174  
基金资助:国家自然科学基金(42076039)
作者简介: 王通,男,1998年生,硕士生

引用本文:

王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
Tong WANG, Wei WANG. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 337-344.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.117      或      https://www.jcscp.org/CN/Y2023/V43/I2/337

图1  PDMS涂层合成路线
图2  PDMS涂层合成过程中反应物和反应产物的红外谱图
图3  PDMS涂层SEM图像
图4  PDMS涂层自修复LCSM图像
图5  聚二甲基硅氧烷涂层长效防腐过程中的EIS图
图6  聚二甲基硅氧烷涂层长效防腐过程中的等效电路模型
图7  聚二甲基硅氧烷涂层长效防腐过程中的DRT分析
Time / dτ1τ2τ3
140.66%36.22%23.11%
1039.05%28.44%32.51%
9012.48%52.74%34.78%
表1  聚二甲基硅氧烷涂层长效防腐过程中DRT分析时间常数面积比
图8  聚二甲基硅氧烷涂层在划伤-自修复循环过程中的EIS图
图9  聚二甲基硅氧烷涂层在修复-划伤循环中的等效电路模型
图10  聚二甲基硅氧烷涂层每次修复后的DRT分析
图11  聚二甲基硅氧烷涂层每次划伤后的DRT分析
Number of self-headingτ1τ3
H194.96%5.00%
H292.32%7.68%
H395.57%4.43%
表2  聚二甲基硅氧烷涂层每次修复后DRT分析时间常数面积比
Number of scratchesτ1τ2τ3
S115.79%16.73%66.47%
S213.09%19.61%67.30%
S315.95%17.69%66.36%
表3  聚二甲基硅氧烷涂层每次划伤后DRT分析时间常数面积比
[1] Ye Y W, Liu Z Y, Liu W, et al. Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel [J]. Chem. Eng. J., 2018, 348: 940
doi: 10.1016/j.cej.2018.02.053
[2] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
[3] Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for a dvanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
[3] (余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395)
[4] Zhang X H, Zhou Z K, Xu Q J, et al. Anti-corrosion performance of nickel-rich conductive coatings in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 189
[4] (张心华, 周仲康, 徐群杰 等. 富镍导电涂层在模拟海水中的耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2017, 37: 189)
[5] Wang Q, Wang W, Ji X H, et al. Self-healing coatings containing core-shell nanofibers with ph-responsive performance [J]. ACS Appl. Mater. Interfaces, 2021, 13: 3139
doi: 10.1021/acsami.0c18933
[6] Zhang Y, Fan W J, Zhang T F, et al. Review of Intelligent Self-healing coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 299
[6] (张勇, 樊伟杰, 张泰峰 等. 涂层自修复技术研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 299)
[7] Liu X X, Yu J S, Gao Y, et al. Effect of APTES modified montmorillonite on protective property of hybrid sol-gel coating on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 464
[7] (刘煊煊, 于金山, 高燕 等. APTES改性蒙脱土对镁合金表面杂化溶胶-凝胶涂层防护性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 464)
[8] Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
[8] (高浩东, 崔宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39)
[9] Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
[9] (曹京宜, 王智峤, 李亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139)
[10] Cao L, Wang W, Li Q Y, et al. Three-dimensional nanofibers network multifunctional material for photothermal self-healing protective coating [J]. Chem. Eng. J., 2022, 440: 134943
doi: 10.1016/j.cej.2022.134943
[11] Ji X H, Wang W, Zhao X, et al. Poly (dimethyl siloxane) anti-corrosion coating with wide pH-responsive and self-healing performance based on core-shell nanofiber containers [J]. J. Mater. Sci. Technol., 2022, 101: 128
doi: 10.1016/j.jmst.2021.06.014
[12] Danzer M A. Generalized distribution of relaxation times analysis for the characterization of impedance spectra [J]. Batteries, 2019, 5: 53
doi: 10.3390/batteries5030053
[13] Schichlein H, Müller A C, Voigts M, et al. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells [J]. J. Appl. Electrochem., 2002, 32: 875
doi: 10.1023/A:1020599525160
[14] Sabet P S, Sauer D U. Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel-manganese-cobalt cathodes [J]. J. Power Sources, 2019, 425: 121
doi: 10.1016/j.jpowsour.2019.03.068
[15] Sheng C C, Yu F J, Li C M, et al. Diagnosing the SEI layer in a potassium ion battery using distribution of relaxation time [J]. J. Phys. Chem. Lett., 2021, 12: 2064
doi: 10.1021/acs.jpclett.1c00118 pmid: 33617250
[16] Ciucci F, Chen C. Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: A Bayesian and hierarchical bayesian approach [J]. Electrochim. Acta, 2015, 167: 439
doi: 10.1016/j.electacta.2015.03.123
[17] Wang J, Huang Q A, Li W H, et al. Fundamentals of distribution of relaxation times for electrochemical impedance spectroscopy [J]. J. Electrochem., 2020, 26: 607
doi: 10.13208/j.electrochem.200641
[17] (王佳, 黄秋安, 李伟恒 等. 电化学阻抗谱弛豫时间分布基础 [J]. 电化学, 2020, 26: 607)
doi: 10.13208/j.electrochem.200641
[18] Clematis D, Ferrari T, Bertei A, et al. On the stabilization and extension of the distribution of relaxation times analysis [J]. Electrochim. Acta, 2021, 391: 138916
doi: 10.1016/j.electacta.2021.138916
[19] Huang J, Papac M, O'Hayre R. Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion [J]. Electrochim. Acta, 2021, 367: 137493
doi: 10.1016/j.electacta.2020.137493
[20] Yang M S, Sun Y H, Chen G M, et al. Preparation of a self-healing silicone coating for inhibiting adhesion of benthic diatoms [J]. Mater. Lett., 2020, 268: 127496
doi: 10.1016/j.matlet.2020.127496
[21] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijng: Chemical Industry Press, 2008: 188
[21] (曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008: 188)
[1] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[3] 赵璐, 李谦, 赵天亮. 青铜器腐蚀行为与封护技术[J]. 中国腐蚀与防护学报, 2023, 43(6): 1165-1177.
[4] 李田雨, 王维康, 李扬涛, 包腾飞, 赵梦凡, 沈欣欣, 倪磊, 马庆磊, 田惠文. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[5] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[6] 李海燕, 刘欢, 王阁义, 张秀菊, 陈同舟, 俞云, 姚洪. 锅炉受热面的冲蚀磨损与防护综述[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[7] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[8] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[9] 宇波, 李彰, 周凯旋, 田浩亮, 房永超, 张晓敏, 金国. MoSi2 改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[10] 陈惠敏, 王帅星, 张骐, 詹中伟, 杜楠. 5,5-二甲基乙内酰脲配位体系中银的电沉积行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 896-902.
[11] 孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[12] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[13] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[14] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[15] 陈异凡, 孟凡帝, 曲优异, 方芷晴, 刘莉, 王福会. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 345-351.