Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 289-300     CSTR: 32134.14.1005.4537.2022.292      DOI: 10.11902/1005.4537.2022.292
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
多羟基超分散剂对水性环氧涂层防腐性能的影响
袁世成1,2, 吴艳峰3, 徐长慧2, 王兴奇2, 冷哲1(), 杨延格2()
1.浙江海洋大学海洋工程装备学院 舟山 316002
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.海装装备项目管理中心 北京 100071
Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings
YUAN Shicheng1,2, WU Yanfeng3, XU Changhui2, WANG Xingqi2, LENG Zhe1(), YANG Yange2()
1.School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan 316022, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Equipment Project Management Center of Naval Equipment Department, Beijing 100071, China
全文: PDF(14184 KB)   HTML
摘要: 

通过开路电位测量、电化学阻抗谱测试、动电位极化曲线测试、附着力测试等手段,研究了多羟基超分散剂对水性环氧清漆防腐性能的影响。结果表明,在3.5%NaCl溶液中,环氧清漆和含分散剂的环氧清漆的失效历程相同,可分为4个阶段:涂层快速吸水阶段、涂层腐蚀产物生成阶段、稳定腐蚀阶段和腐蚀产物扩散阶段。含分散剂的环氧清漆表现为较强的吸水性,多羟基超分散剂增加了涂层的饱和吸水率,加快了涂层的腐蚀失效。

关键词 分散剂水性环氧吸水率腐蚀电化学阻抗谱    
Abstract

The effect of polyhydroxy hyperdispersants on the anti-corrosion property of waterborne epoxy varnishes were studied by means of open circuit potential, electrochemical impedance spectroscopy, polarization curves measurements and adhesion test. The results show that the addition of polyhydroxy dispersant into the epoxy varnish may accelerate the water absorption rate of the coating, while the increased water absorption can result in the preferential failure of the epoxy varnish. The corrosion failure process of epoxy varnish and epoxy varnish with 2% dispersant in 3.5%NaCl solution is the same, which can be divided into four stages: rapid water absorption of coating, the formation of corrosion products at the coating/metal interface, the accumulation of corrosion products and the diffusion of corrosion products.

Key wordsdispersant    waterborne epoxy    water absorption    corrosion    electrochemical impedance spectroscopy
收稿日期: 2022-09-21      32134.14.1005.4537.2022.292
ZTFLH:  TQ630.4+9  
基金资助:工信部民机专项(MJ-2017-J-99);浙江省省属高校基本科研业务费(2021JZ006)
作者简介: 袁世成,男,1997年生,硕士生

引用本文:

袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
Shicheng YUAN, Yanfeng WU, Changhui XU, Xingqi WANG, Zhe LENG, Yange YANG. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 289-300.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.292      或      https://www.jcscp.org/CN/Y2023/V43/I2/289

CompositionFormulaEpoxy varnish
Component ACuring agent K-6216.6
Defoamer BW-2250.4
Flash rust inhibitors G-1201.4
Thickening agent BW-5091.0
Epoxy lotion80.6
Component BEpoxy emulsion K-02099.5
Leveling agent BW4040.5
表1  实验所用环氧清漆涂层的成分配比表
图1  两种涂层开路电位随浸泡时间的变化曲线
图2  两种涂层低频阻抗模值随浸泡时间的变化
图3  EV涂层4个阶段的Nyquist图和Bode图
图4  EVD涂层失效过程中4个阶段的Nyquist图和Bode图
图5  用于拟合两种涂层阻抗谱数据的等效电路模型
图6  EV涂层和EVD涂层的电化学拟合参数随时间的变化
图7  水在两种涂层中扩散的线性拟合结果
CoatingPeriod / hAB / t·s-12RD / 10-10 cm2·s-1
EV0-96-9.49351.67×10-40.965041.06253
EVD0-48-9.66171.03×10-30.990091.34064
48-384-9.31631.81×10-40.983730.28778
表2  线性拟合参数和计算结果
图8  两种涂层浸泡不同时间后的动电位极化曲线
CoatingImmersion time / hEcorr / V vs. SCEIcorr / nA cm-2βa / V·dec-1βc / V·dec-1Rp / Ω·cm2
72-0.1770.70.1620.1805.29×107
EV384-0.2061.10.2580.2955.43×107
6720-0.2641.20.2100.1843.55×107
72-0.2271.10.1690.1573.21×107
EVD384-0.2471.40.2620.2133.64×107
6720-0.4001.80.1850.2142.39×107
表3  两种涂层浸泡在3.5%NaCl溶液中不同时间的电化学参数
图9  两种涂层湿态附着力随浸泡时间的变化
图10  EV和EVD附着力测试后的金属基体形貌
图11  两种涂层不同断裂形式的百分比
图12  EV和EVD涂层浸泡不同时间后的显微形貌
图13  EV和EVD涂层浸泡不同时间的腐蚀区域百分比
图14  EVD涂层固化过程
图15  EVD涂层的失效过程
[1] Berce P, Skale S, Slemnik M. Electrochemical impedance spectroscopy study of waterborne coatings film formation [J]. Prog. Org. Coat., 2015, 82: 1
[2] Lendvay-Győrik G, Pajkossy T, Lengyel B. Corrosion-protection properties of water-borne paint coatings as studied by electrochemical impedance spectroscopy and gravimetry [J]. Prog. Org. Coat., 2006, 56: 304
doi: 10.1016/j.porgcoat.2006.05.012
[3] Löf D, Hamieau G, Zalich M, et al. Dispersion state of TiO2 pigment particles studied by ultra-small-angle X-ray scattering revealing dependence on dispersant but limited change during drying of paint coating [J]. Prog. Org. Coat., 2020, 142: 105590
[4] Song Z Y, Zhang C, Fu X Q, et al. Graphene nanosheet as a new particle dispersant for the jet-electrodeposition of high-performance Ni-P-WC composite coatings [J]. Surf. Coat. Technol., 2021, 425: 127740
doi: 10.1016/j.surfcoat.2021.127740
[5] Zeng T C. Preparation and performances of reactive branched polyurethane dispersants [D]. Wuxi: Jiangnan University, 2021
[5] (曾腾超. 反应性支化聚氨酯高分子分散剂的制备及性能 [D]. 无锡: 江南大学, 2021)
[6] Silber S, Reuter E, Stüttgen A, et al. New concepts for the synthesis of wetting and dispersing additives for water-based systems [J]. Prog. Org. Coat., 2002, 45: 259
doi: 10.1016/S0300-9440(02)00064-4
[7] Saindane P, Jagtap R N. RAFT copolymerization of amphiphilic poly (ethyl acrylate-b-acrylic acid) as wetting and dispersing agents for water borne coating [J]. Prog. Org. Coat., 2015, 79: 106
[8] Lokhande G P, Jagtap R N. Design and synthesis of polymeric dispersant for water-borne paint by atom transfer radical polymerization [J]. Des. Monomers Polym., 2016, 19: 256
doi: 10.1080/15685551.2015.1136534
[9] Nie A Y, Huang B H, Wang P Z, et al. Application of polymer dispersant in waterborne coatings [J]. Mod. Paint. Finish., 2021, 24(2): 12
[9] (聂爱杨, 黄炳华, 汪鹏主 等. 高分子分散剂在水性涂料中的应用 [J]. 现代涂料与涂装, 2021, 24(2): 12)
[10] Rezende T C, Silvestre J C M, Mendonça P V, et al. Efficient dispersion of TiO2 in water-based paint formulation using well-defined poly[oligo (ethylene oxide) methyl ether acrylate] synthesized by ICAR ATRP [J]. Prog. Org. Coat., 2022, 165: 106734
[11] Li C C, Xia Z B, Yan H, et al. Benzotriazole functionalized polydimethylsiloxane for reinforcement water-repellency and corrosion resistance of bio-based waterborne epoxy coatings in salt environment [J]. Corros. Sci., 2022, 199: 110150
doi: 10.1016/j.corsci.2022.110150
[12] Liu X W, Xiong J P, Lv Y W, et al. Study on corrosion electrochemical behavior of several different coating systems by EIS [J]. Prog. Org. Coat., 2009, 64: 497
doi: 10.1016/j.porgcoat.2008.08.012
[13] Dong Y H, Zhou Q. Relationship between ion transport and the failure behavior of epoxy resin coatings [J]. Corros. Sci., 2014, 78: 22
doi: 10.1016/j.corsci.2013.08.017
[14] Zhao X, Liu S, Wang X T, et al. Surface modification of ZrO2 nanoparticles with styrene coupling agent and its effect on the corrosion behaviour of epoxy coating [J]. Chin. J. Oceanol. Limnol., 2014, 32: 1163
doi: 10.1007/s00343-014-3327-8
[15] Liu B, Li Y, Lin H C, et al. Study on the diffusing behavior of water through epoxy coatings by EIS [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 172
[15] (刘斌, 李瑛, 林海潮 等. 用EIS研究H2O在环氧涂层中的传输行为 [J]. 中国腐蚀与防护学报, 2002, 22: 172)
[16] Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
[16] (曹京宜, 王智峤, 李亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139)
[17] Sun W S, Yu S R, Gao S, et al. Molecular dynamics simulation of water molecule diffusion in graphene-reinforced epoxy resin anticorrosive coatings [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 411
[17] (孙伟松, 于思荣, 高嵩 等. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟 [J]. 中国腐蚀与防护学报, 2021, 41: 411)
[18] Ai D, Mo R B, Wang H H, et al. Preparation of waterborne epoxy dispersion and its application in 2K waterborne epoxy coatings [J]. Prog. Org. Coat., 2019, 136: 105258
[19] Li P, Wang S, Zhou S X. Film formation behavior and mechanical properties of one-component waterborne crosslinkable polysiloxane/fumed silica nanocomposite coatings [J]. Prog. Org. Coat., 2020, 147: 105870
[20] Floyd F L, Avudaiappan S, Gibson J, et al. Using electrochemical impedance spectroscopy to predict the corrosion resistance of unexposed coated metal panels [J]. Prog. Org. Coat., 2009, 66: 8
doi: 10.1016/j.porgcoat.2009.04.009
[1] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[3] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[4] 邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[5] 王华, 王英杰, 刘恩泽. Ni含量对Co-Al-W合金热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[6] 张心怡, 李聪, 汪禹熙, 黄美, 朱卉平, 刘芳, 刘洋, 牛风雷. 铅基堆结构材料液态金属腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[7] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[8] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[9] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[10] 何训, 吴梦雪, 尹力, 朱金. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[11] 田光元, 严程铭, 杨智皓, 王俊升. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[12] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[13] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[14] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[15] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.