Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 752-758    DOI: 10.11902/1005.4537.2021.246
  研究报告 本期目录 | 过刊浏览 |
热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响
潘鑫1, 任泽2, 连景宝1, 何川1, 郑平1, 陈旭1()
1.辽宁石油化工大学石油与天然气工程学院 抚顺 113001
2.国家石油天然气管网集团有限公司山东运维中心济宁作业区 济宁 272000
Effect of Heat Treatment Process on Corrosion Behavior of Super 13Cr Stainless Steel in CO2-Saturated Oilfield Formation Aqueous Solution
PAN Xin1, REN Ze2, LIAN Jingbao1, HE Chuan1, ZHENG Ping1, CHEN Xu1()
1.College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
2.Jining Operation Area, Shandong Operation and Maintenance Center, National Petroleum and Natural Gas Pipeline Network Group Co. Ltd., Jining 272000, China
全文: PDF(6271 KB)   HTML
摘要: 

采用金相显微镜、XRD、电化学实验和慢应变速率拉伸等实验方法,研究了不同热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为的影响。结果表明,超级13Cr不锈钢经620 ℃回火处理后产生逆变奥氏体,二次回火处理会增加材料中逆变奥氏体的含量。不同热处理工艺下的超级13Cr不锈钢在饱和CO2的油田地层水溶液中的极化曲线均存在明显钝化区间。与供货态相比,回火工艺使超级13Cr不锈钢耐蚀性下降,但二次回火能够提高材料的耐蚀性。超级13Cr耐蚀性与逆变奥氏体含量有关。淬火试样应力腐蚀开裂 (SCC) 敏感性最高。淬火试样、550和690 ℃回火试样的SCC机制为氢致开裂。620 ℃回火及二次回火试样因逆变奥氏体的存在,SCC敏感性降低,其开裂机制为混合断裂机制。

关键词 超级13Cr不锈钢热处理油田地层水CO2腐蚀    
Abstract

The corrosion behavior of super 13Cr stainless steel subjected to different heat treatment processes in CO2-saturated oilfield formation water was assessed by means of metallographic microscope, XRD, electrochemical experiment and slow strain rate tensile method. The results showed that reversed austenite appeared in the super 13Cr SS after tempering at 620 ℃. A secondary tempering treatment could result in the increment of the amount of reversed austenite. There exists a passivation interval on polarization curves in CO2-saturated oilfield formation solution for all the super 13Cr SSs after being subjected to different heat treatments. The tempering process could result in decrease in the corrosion resistance of super 13Cr SS, in the contrast, a secondary tempering could result in an enhancing effect. The corrosion resistance of super 13Cr SS was related to the content of reversed austenite. The oil-quenched 13Cr SS had the highest SCC sensitivity. The SCC mechanism of the quenched 13Cr SS, as well as the 13Cr SSs tempered at 550 and 690 ℃, respectively were all hydrogen induced cracking. The SCC sensitivity of 13Cr SSs after subjected to 620 ℃-tempering and 650 ℃+620 ℃ double-tempering, decreased due to the presence of reversed austenite, accordingly, the cracking mechanism was mixed fracture.

Key wordssuper 13Cr stainless steel    heat treatment    oilfield formation solution    CO2 corrosion
收稿日期: 2021-09-18     
ZTFLH:  TG174  
基金资助:教育部“春晖”国际合作计划项目和辽宁省教育厅面上项目(LJKZ0416)
通讯作者: 陈旭     E-mail: cx0402@sina.com
Corresponding author: CHEN Xu     E-mail: cx0402@sina.com
作者简介: 潘鑫,女,1996年生,硕士生

引用本文:

潘鑫, 任泽, 连景宝, 何川, 郑平, 陈旭. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
Xin PAN, Ze REN, Jingbao LIAN, Chuan HE, Ping ZHENG, Xu CHEN. Effect of Heat Treatment Process on Corrosion Behavior of Super 13Cr Stainless Steel in CO2-Saturated Oilfield Formation Aqueous Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 752-758.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.246      或      https://www.jcscp.org/CN/Y2022/V42/I5/752

Sample numberHeat treatment condition
A1050 ℃×0.5 h oil cooling
B1050 ℃×0.5 h water cooling +550 ℃×6 h furnace cooled
C1050 ℃×0.5 h water cooling+620 ℃×6 h furnace cooled
D1050 ℃×0.5 h water cooling+690 ℃×6 h furnace cooled
E1050 ℃×0.5 h oil cooling+650 ℃×2 h furnace cooled+620 ℃×6 h furnace cooled
表1  超级13Cr不锈钢的热处理工艺
图1  SSRT试样尺寸图
图2  不同热处理条件下超级13Cr不锈钢的金相组织形貌
图3  经不同条件热处理后超级13Cr不锈钢的XRD图谱
图4  经不同条件热处理的超级13Cr不锈钢在饱和CO2油田地层水中的极化曲线
Heat treatment conditionIp / μA·cm-2Ep / V
Quenching2.960.05
550 ℃-tempering4.47-0.04
620 ℃-tempering4.26-0.02
690 ℃-tempering4.52-0.12
Two-stage tempering3.890
表2  极化曲线的拟合结果
图5  经不同条件热处理的超级13Cr不锈钢在饱和CO2油田地层水中的EIS图及等效电路
Heat treatment conditionsRsΩ·cm-2RfΩ·cm-2CPEdlF·cm-2RctΩ·cm-2
quenching5.7329.409.74×10-66.38×104
550 ℃-tempering4.407.641.26×10-53.23×104
620 ℃-tempering4.7016.931.21×10-55.30×104
690 ℃-tempering4.523.221.79×10-52.69×104
Two-stage tempering5.3419.041.14×10-55.52×104
表3  不同条件热处理的超级13Cr不锈钢EIS拟合结果
图6  经不同条件热处理的超级13Cr不锈钢在饱和CO2油田地层水中的SSRT曲线及断面收缩率及延伸率
图7  经不同条件热处理的超级13Cr不锈钢主断口及侧断口形貌
1 Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
doi: 10.1016/j.electacta.2016.01.094
2 Ren Z, Chen X, Dong P, et al. Effect of heat treatment process on microstructure and tensile properties of super 13Cr stainless steel [J]. Iron Steel, 2019, 54(7): 68
2 任泽, 陈旭, 董培 等. 热处理对超级13Cr不锈钢组织及拉伸性能的影响 [J]. 钢铁, 2019, 54(7): 68
3 Xiao G Q, Tan S Z, Yu Z M, et al. CO2 corrosion behaviors of 13Cr steel in the high-temperature steam environment [J]. Petroleum, 2020, 6: 106
doi: 10.1016/j.petlm.2019.12.001
4 Zhang Z, Zheng Y S, Li J, et al. Stress corrosion crack evaluation of super 13Cr tubing in high-temperature and high-pressure gas wells [J]. Eng. Fail. Anal., 2019, 95: 263
doi: 10.1016/j.engfailanal.2018.09.030
5 Rodrigues C A D, Lorenzo P L D, Sokolowski A, et al. Titanium and molybdenum content in supermartensitic stainless steel [J]. Mater. Sci. Eng., 2007, 460/461A: 149
6 Kimura M, Miyata Y, Toyooka T, et al. Effect of retained austenite on corrosion performance for modified 13% Cr steel pipe [J]. Corrosion, 2001, 57: 433
doi: 10.5006/1.3290367
7 Gervasi C A, Méndez C M, Bilmes P D, et al. Analysis of the impact of alloy microstructural properties on passive films formed on low-C 13CrNiMo martensitic stainless steels [J]. Mater. Chem. Phys., 2011, 126: 178
doi: 10.1016/j.matchemphys.2010.11.043
8 He X, Li J, Li S H, et al. Effects of tempering temperature after cryogenic treatment on microstructure and pitting resistance of 15Cr super martensite stainless steel [J]. Heat Treat. Met., 2020, 45(11): 62
8 何潇, 李俊, 李绍宏 等. 深冷处理后回火温度对15Cr超级马氏体不锈钢组织及耐点蚀性能的影响 [J]. 金属热处理, 2020, 45(11): 62
9 Chen Z Y, Zhang X Y, Wang F P, et al. The mechanism and influence factors of CO2 corrosion [J]. Dev. Appl. Mater., 1998, 13(5): 34
9 陈卓元, 张学元, 王凤平 等. 二氧化碳腐蚀机理及影响因素 [J]. 材料开发与应用, 1998, 13(5): 34
10 Chen X, Li C Y, Ming N X, et al. Effects of temperature on the corrosion behaviour of X70 steel in CO2-containing formation water [J]. J. Nat. Gas Sci. Eng., 2021, 88: 103815
doi: 10.1016/j.jngse.2021.103815
11 Zhang G C, Zhang H, Niu K, et al. Corrosion resistance of 13Cr stainless steel against high temperature and high pressure carbon dioxide [J]. Mater. Prot., 2012, 45(6): 58
11 张国超, 张涵, 牛坤 等. 高温高压下超级13Cr不锈钢抗CO2腐蚀性能 [J]. 材料保护, 2012, 45(6): 58
12 Liu Y Z, Chang Z L, Zhao G X, et al. Corrosion behavior of super 13%Cr martensitic stainless steel under ultra-deep, ultra-high pressure and high temperature oil and gas well environment [J]. Hot Work. Technol., 2012, 41(10): 71
12 刘艳朝, 常泽亮, 赵国仙 等. 超级13Cr不锈钢在超深超高压高温油气井中的腐蚀行为研究 [J]. 热加工工艺, 2012, 41(10): 71
13 Lv X H, Zhao G X, Zhang J B, et al. Corrosion behaviors of super 13Cr martensitic stainless steel under CO2 and H2S/CO2 environment [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 207
13 吕祥鸿, 赵国仙, 张建兵 等. 超级13Cr马氏体不锈钢在CO2及H2S/CO2环境中的腐蚀行为 [J]. 北京科技大学学报, 2010, 32: 207
14 Zhang C X, Qi Y M, Zhang Z H. Study on the corrosion behavior of super 13Cr stainless steel in environment with H2S and CO2 [J]. Bao-Steel Technol., 2020, (1): 7
14 张春霞, 齐亚猛, 张忠铧. 超级13Cr在H2S和CO2共存环境下的腐蚀行为影响研究 [J]. 宝钢技术, 2020, (1): 7
15 Liu Y J, Lv X H, Zhao G X, et al. Corrosion behaviors of super 13Cr martensitic stainless steel under drilling and completion fluids environment [J]. J. Mater. Eng., 2012, (10): 17
15 刘亚娟, 吕祥鸿, 赵国仙 等. 超级13Cr马氏体不锈钢在入井流体与产出流体环境中的腐蚀行为研究 [J]. 材料工程, 2012, (10): 17
16 Han Y, Zhao X H, Bai Z Q, et al. Corrosion behavior of super 13Cr stainless steel in Cl-/CO2 medium at different temperatures [J]. Corros. Prot., 2011, 32: 366
16 韩燕, 赵雪会, 白真权 等. 不同温度下超级13Cr在Cl-/CO2环境中的腐蚀行为 [J]. 腐蚀与防护, 2011, 32: 366
17 Zhu D J, Liu X X, Lin Y H, et al. Corrosion behavior of oil tubular goods under supercritical CO2 conditions in high temperature and high pressure sour gas wells [J]. Mater. Prot., 2017, 50(3): 79
17 朱达江, 刘晓旭, 林元华 等. 高温高压酸性气井油套管钢在超临界CO2环境下的腐蚀行为 [J]. 材料保护, 2017, 50(3): 79
18 Anselmo N, May J E, Mariano N A, et al. Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater [J]. Mater. Sci. Eng., 2006, 428A: 73
19 Leem D S, Lee Y D, Jun J H, et al. Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3%Si martensitic stainless steel [J]. Scr. Mater., 2001, 45: 767
doi: 10.1016/S1359-6462(01)01093-4
20 Bilmes P D, Solari M, Llorente C L. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals [J]. Mater. Charact., 2001, 46: 285
doi: 10.1016/S1044-5803(00)00099-1
21 Zhu J S. The behavior of hot deformation and heat treatment of 13Cr4Ni martensitic stainless steel [D]. Nanning: Guangxi University, 2019
21 朱觉顺. 13Cr4Ni马氏体不锈钢热变形行为与热处理工艺研究 [D]. 南宁: 广西大学, 2019
22 Chen W, Peng Q. Effect of chloride ion concentration in sodium chloride solution saturated with carbon dioxide on corrosion behavior of 2Cr13 stainless steel [J]. Mater. Prot., 2013, 46(2): 26
22 陈伟, 彭乔. CO2饱和NaCl溶液中Cl-浓度对2Cr13不锈钢腐蚀行为的影响 [J]. 材料保护, 2013, 46(2): 26
23 Li X P, Zhao Y, Qi W L, et al. Effect of extremely aggressive environment on the nature of corrosion scales of HP-13Cr stainless steel [J]. Appl. Surf. Sci., 2019, 469: 146
doi: 10.1016/j.apsusc.2018.10.237
24 Yin Z F, Wang X Z, Liu L, et al. Characterization of corrosion product layers from CO2 corrosion of 13Cr stainless steel in simulated oilfield solution [J]. J. Mater. Eng. Perform., 2011, 20: 1330
doi: 10.1007/s11665-010-9769-z
25 Lei B, Ma Y T, Li Y, et al. Effect of saturated CO2 on corrosion behavior of 13Cr pipe steel in high chloride environment [J]. Corros. Sci. Prot. Technol., 2013, 25: 95
25 雷冰, 马元泰, 李瑛 等. 高氯环境中饱和CO2对13Cr油管钢腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2013, 25: 95
26 Wan H X, Du C W, Liu Z Y, et al. The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment [J]. Ocean Eng., 2016, 114: 216
doi: 10.1016/j.oceaneng.2016.01.020
27 Yin H, Li Q, Li J X, et al. Study on hydrogen embrittlement for pre-charged maraging steel [J]. Surf. Technol., 2016, 45(7): 22
27 尹航, 李倩, 李金许 等. 预充氢马氏体时效钢的氢脆性能研究 [J]. 表面技术, 2016, 45(7): 22
28 Xie C Q, Li J X, Li Q, et al. Effect of precipitate on hydrogen diffusion coefficient of TM210 maraging steel [J]. Trans. Mater. Heat Treat., 2014, 35(11): 33
28 谢春乾, 李金许, 李倩 等. 析出相对马氏体时效钢氢扩散系数的影响 [J]. 材料热处理学报, 2014, 35(11): 33
[1] 赵国仙, 王映超, 张思琦, 宋洋. H2S/CO2对J55钢腐蚀的影响机制[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[2] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[3] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[4] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[5] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[6] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[7] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[8] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[9] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[10] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[11] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[12] 牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[13] 韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[14] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[15] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.