Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 743-751    DOI: 10.11902/1005.4537.2022.131
  研究报告 本期目录 | 过刊浏览 |
海洋假交替单胞菌Pseudoalteromonas lipolytica分泌黑色素加速316L不锈钢腐蚀机理的研究
郭娜, 毛晓敏, 惠芯蕊, 郭章伟, 刘涛()
上海海事大学海洋科学与工程学院 上海 201306
Corrosion Behavior of 316L Stainless Steel in Media Containing Pyomelanin Secreted by Pseudoalteromonas lipolytica
GUO Na, MAO Xiaomin, HUI Xinrui, GUO Zhangwei, LIU Tao()
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
全文: PDF(11764 KB)   HTML
摘要: 

以海洋假交替单胞菌P. lipolytica的野生菌株 (WT) 与产色菌株 (∆hmgA) 为模式菌株,重点研究海洋细菌分泌黑色素加速不锈钢腐蚀的行为和机理。通过扫描电镜 (SEM)、激光共聚焦显微镜 (CLSM)、X射线衍射 (XRD) 和电化学等手段证明了WT菌株不会造成不锈钢腐蚀,不锈钢在含WT的培养液中依然会形成完整的钝化膜;而∆hmgA菌株会在分泌黑色素的同时,在不锈钢表面形成矿化位点,从而破坏了不锈钢表面的钝化膜,造成严重的点蚀。不锈钢在细菌黑色素提取液中也会形成点蚀,但由于没有细菌参与,不锈钢的钝化膜相对完整,因此点蚀程度较轻。本文研究在含有产色细菌和黑色素物质的环境条件下不锈钢的腐蚀机理以及黑色素对钝化膜形成和点蚀发展的影响机制,从而丰富和拓展产色菌和细菌色素对金属腐蚀的机理。

关键词 海洋假交替单胞菌产色菌细菌色素不锈钢点蚀    
Abstract

By taking marine Pseudoalteromonas lipolytica (P. lipolytica) wild type strain (WT) and the genetically engineered P. lipolytica mutant strain with hmgA gene deletion (∆hmgA) as model strains, the influence of marine bacteria secreting pyomelanin on the corrosion behavior of 316L stainless steel in marine bacteria culture solutions was studied via electrochemical measurements, scanning electron microscopy (SEM), laser confocal microscopy (CLSM) and X-ray diffraction (XRD). It was proved that WT strain did not cause corrosion of the stainless steel, correspondingly a compact passivation film may form on the steel surface in the medium containing WT. While the ∆hmgA strain will secrete pyomelanin and induce formation of mineralization sites on the stainless-steel surface, thus destroying the formed passivation film and further causing serious pitting corrosion. In bacterial pyomelanin solution, the stainless steel will also be suffered from pitting corrosion, however, a rather intact passivation film can still be formed on the steel surface due to that no bacteria may be involved to the process. In general, this study revealed that the corrosion mechanism of stainless steel in the environments containing pigmented bacteria and the influence of pyomelanin on passivation film formation and pitting development.

Key wordsPseudoalteromonas lipolytica    pigmented bacteria    bacterial pyomelanin    stainless steel    pitting
收稿日期: 2022-05-03     
ZTFLH:  TG174  
基金资助:国家自然科学基金(41976039);国家自然科学基金(42006039);国家自然科学基金(51901127);上海市自然科学基金(19ZR1422100)
通讯作者: 刘涛     E-mail: liutao@shmtu.edu.cn
Corresponding author: LIU Tao     E-mail: liutao@shmtu.edu.cn
作者简介: 郭娜,女,1983年生,工程师

引用本文:

郭娜, 毛晓敏, 惠芯蕊, 郭章伟, 刘涛. 海洋假交替单胞菌Pseudoalteromonas lipolytica分泌黑色素加速316L不锈钢腐蚀机理的研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 743-751.
Na GUO, Xiaomin MAO, Xinrui HUI, Zhangwei GUO, Tao LIU. Corrosion Behavior of 316L Stainless Steel in Media Containing Pyomelanin Secreted by Pseudoalteromonas lipolytica. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 743-751.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.131      或      https://www.jcscp.org/CN/Y2022/V42/I5/743

图1  P. lipolytica的野生菌 (WT)、基因突变株 (∆hmgA) 生长曲线,pH值,溶解氧在7 d内随时间变化规律
图2  不锈钢样品在不同溶液中浸泡14 d后的宏观形貌
图3  不锈钢样品分别在WT和∆hmgA培养液中浸泡不同时间并染色标记后的CLSM图像
图4  不锈钢样品分别在不同溶液浸泡14 d后的表面生物膜形貌
图5  不锈钢样品不同溶液内浸泡14 d后XRD谱
图6  不锈钢样品分别在无菌溶液、WT培养液、∆hmgA培养液和黑色素溶液浸泡14 d后白光干涉图像
图7  不锈钢样品在不同溶液浸泡14 d后的动电位极化曲线
Solution time / dEcorr / VIcorr / A·cm-2Ep / V
Abiotic-14-0.494.60×10-7-0.20
hmgA-14-0.421.13×10-6---
WT-14-0.517.16×10-7-0.25
Pyomelanin-14-0.198.46×10-7-0.30
表1  不锈钢样品在不同溶液内浸泡不同时间后极化曲线的拟合参数
图8  不锈钢样品在不同溶液内浸泡不同时间后电化学阻抗谱
SolutionTime / dRs / Ω·cm2Y1 / S·sec n ·cm-2nRf / Ω·cm2Y2 / S·sec n ·cm-2nRct / Ω·cm2
Abiotic12.9---------4.0×10-50.93.0×106
34.5---------4.0×10-50.94.8×106
76.4---------4.3×10-50.96.9×106
103.4---------7.5×10-50.93.0×106
145.8---------8.9×10-50.84.8×107
WT14.9---------3.4×10-50.83.1×105
35.3---------2.6×10-50.92.7×105
76.6---------1.6×10-50.93.2×106
109.5---------1.2×10-50.95.2×106
148.5---------4.7×10-50.93.7×107
hmgA13.6---------3.3×10-40.81.8×103
34.5---------6.4×10-40.89.8×102
73.75.2×10-50.88184.0×10-40.81.3×104
101.83.4×10-50.68723.1×10-40.93.5×104
141.92.9×10-50.7714.74.7×10-40.92.8×104
Pyomelanin18.2---------5.7×10-50.95.4×106
32.9---------6.4×10-40.82.7×107
79.5---------8.7×10-40.61.7×107
108.5---------4.7×10-40.91.8×107
148.2---------6.0×10-50.83.5×106
表2  不锈钢样品在不同溶液内浸泡不同时间后电化学阻抗拟合参数
1 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
2 Marciales A, Peralta Y, Haile T, et al. Mechanistic microbiologically influenced corrosion modeling—a review [J]. Corros. Sci., 2019, 146: 99
doi: 10.1016/j.corsci.2018.10.004
3 Geweely N S I. Evaluation of ozone for preventing fungal influenced corrosion of reinforced concrete bridges over the River Nile, Egypt [J]. Biodegradation, 2011, 22: 243
doi: 10.1007/s10532-010-9391-7 pmid: 20820884
4 Tian F, Bai X Q, He X Y, et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment [J]. Surf. Technol., 2018, 47(8): 182
4 田丰, 白秀琴, 贺小燕 等. 海洋环境下金属材料微生物腐蚀研究进展 [J]. 表面技术, 2018, 47(8): 182
5 Feng H, Li H B, Lu P C, et al. Investigation on microbiologically influenced corrosion behavior of CrCoNi medium-entropy alloy by pseudomonas aeruginosa [J]. Acta Metall. Sin., 2019, 55: 1457
5 冯浩, 李花兵, 路鹏冲 等. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响 [J]. 金属学报, 2019, 55: 1457
doi: 10.11900/0412.1961.2019.00030
6 Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiology, 2017, 44: 1699
6 黄烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
7 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
doi: 10.1016/j.corsci.2017.10.023
8 Venil C K, Zakaria Z A, Ahmad W A. Bacterial pigments and their applications [J]. Process Biochem., 2013, 48: 1065
9 Hernandez M E, Kappler A, Newman D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction [J]. Appl. Environ. Microbiol., 2004, 70: 921
doi: 10.1128/AEM.70.2.921-928.2004
10 Turick C E, Tisa L S, Caccavo Jr F. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY [J]. Appl. Environ. Microbiol., 2002, 68: 2436
doi: 10.1128/AEM.68.5.2436-2444.2002
11 Egan S, James S, Holmström C, et al. Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata [J]. Environ. Microbiol., 2002, 4: 433
doi: 10.1046/j.1462-2920.2002.00322.x
12 Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
doi: 10.1016/j.corsci.2016.10.025
13 Pardo A, Merino M C, Coy A E, et al. Pitting corrosion behaviour of austenitic stainless steels-combining effects of Mn and Mo additions [J]. Corros. Sci., 2008, 50: 1796
doi: 10.1016/j.corsci.2008.04.005
14 Refaey S A M, Taha F, El-Malak A M A. Corrosion and Inhibition of 316L stainless steel in neutral medium by 2-mercaptobenzimidazole [J]. Int. J. Electrochem. Sci., 2006, 1: 80
15 Albrimi Y A, Eddib A, Douch J, et al. Electrochemical behaviour of AISI 316 austenitic stainless steel in acidic media containing chloride ions [J]. Int. J. Electrochem. Sci., 2011, 6: 4614
16 Haïdopoulos M, Turgeon S, Sarra-Bournet C, et al. Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications [J]. J. Mater. Sci. Mater. Med., 2006, 17: 647
doi: 10.1007/s10856-006-9228-4
17 Wang P X, Yu Z C, Li B Y, et al. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas [J]. Microb. Cell Fact., 2015, 14: 11.
doi: 10.1186/s12934-015-0194-8
18 Bosi E, Fondi M, Maida I, et al. Genome-scale phylogenetic and DNA composition analyses of Antarctic Pseudoalteromonas bacteria reveal inconsistencies in current taxonomic affiliation [J]. Hydrobiologia, 2015, 761: 85
doi: 10.1007/s10750-015-2396-9
19 Guo N, Zhao Q Y, Hui X R, et al. Enhanced corrosion protection action of biofilms based on endogenous and exogenous bacterial cellulose [J]. Corros. Sci., 2022, 194: 109931
doi: 10.1016/j.corsci.2021.109931
20 Zhang Z Q, Chen Z B, Dong Q J, et al. Galvanic corrosion behavior of low alloy steel, stainless steel and Al-Mg alloy in simulated deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 417
20 张泽群, 陈质彬, 董其娟 等. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 417
21 Zhang L H, Li C J, Pan L, et al. Corrosion behavior of 316L stainless steel in simulated oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 625
21 张龙华, 李长君, 潘磊 等. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 625
22 Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
22 张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143
[1] 潘鑫, 任泽, 连景宝, 何川, 郑平, 陈旭. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[2] 万晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[3] 张媛, 张弦, 陈思雨, 李腾, 刘静, 吴开明. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[4] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[5] 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[6] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[7] 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[8] 赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[9] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[10] 辛叶春, 徐伟, 赵东杨, 张波. 超细层片结构Al-4%Cu合金的点蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[11] 伊璞, 侯利锋, 杜华云, 刘笑达, 贾建文, 李阳, 张威, 徐芳泓, 卫英慧. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[12] 丁奕, 王力伟, 刘德运, 王昕. 低合金钢与双相不锈钢异种金属焊接接头组织和性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
[13] 苏娜, 叶梦颖, 李建民, 高荣杰. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[14] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[15] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.