|
|
海洋假交替单胞菌Pseudoalteromonas lipolytica分泌黑色素加速316L不锈钢腐蚀机理的研究 |
郭娜, 毛晓敏, 惠芯蕊, 郭章伟, 刘涛( ) |
上海海事大学海洋科学与工程学院 上海 201306 |
|
Corrosion Behavior of 316L Stainless Steel in Media Containing Pyomelanin Secreted by Pseudoalteromonas lipolytica |
GUO Na, MAO Xiaomin, HUI Xinrui, GUO Zhangwei, LIU Tao( ) |
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China |
引用本文:
郭娜, 毛晓敏, 惠芯蕊, 郭章伟, 刘涛. 海洋假交替单胞菌Pseudoalteromonas lipolytica分泌黑色素加速316L不锈钢腐蚀机理的研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 743-751.
Na GUO,
Xiaomin MAO,
Xinrui HUI,
Zhangwei GUO,
Tao LIU.
Corrosion Behavior of 316L Stainless Steel in Media Containing Pyomelanin Secreted by Pseudoalteromonas lipolytica. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 743-751.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.131
或
https://www.jcscp.org/CN/Y2022/V42/I5/743
|
1 |
Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
|
2 |
Marciales A, Peralta Y, Haile T, et al. Mechanistic microbiologically influenced corrosion modeling—a review [J]. Corros. Sci., 2019, 146: 99
doi: 10.1016/j.corsci.2018.10.004
|
3 |
Geweely N S I. Evaluation of ozone for preventing fungal influenced corrosion of reinforced concrete bridges over the River Nile, Egypt [J]. Biodegradation, 2011, 22: 243
doi: 10.1007/s10532-010-9391-7
pmid: 20820884
|
4 |
Tian F, Bai X Q, He X Y, et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment [J]. Surf. Technol., 2018, 47(8): 182
|
4 |
田丰, 白秀琴, 贺小燕 等. 海洋环境下金属材料微生物腐蚀研究进展 [J]. 表面技术, 2018, 47(8): 182
|
5 |
Feng H, Li H B, Lu P C, et al. Investigation on microbiologically influenced corrosion behavior of CrCoNi medium-entropy alloy by pseudomonas aeruginosa [J]. Acta Metall. Sin., 2019, 55: 1457
|
5 |
冯浩, 李花兵, 路鹏冲 等. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响 [J]. 金属学报, 2019, 55: 1457
doi: 10.11900/0412.1961.2019.00030
|
6 |
Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiology, 2017, 44: 1699
|
6 |
黄烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
|
7 |
Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
doi: 10.1016/j.corsci.2017.10.023
|
8 |
Venil C K, Zakaria Z A, Ahmad W A. Bacterial pigments and their applications [J]. Process Biochem., 2013, 48: 1065
|
9 |
Hernandez M E, Kappler A, Newman D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction [J]. Appl. Environ. Microbiol., 2004, 70: 921
doi: 10.1128/AEM.70.2.921-928.2004
|
10 |
Turick C E, Tisa L S, Caccavo Jr F. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY [J]. Appl. Environ. Microbiol., 2002, 68: 2436
doi: 10.1128/AEM.68.5.2436-2444.2002
|
11 |
Egan S, James S, Holmström C, et al. Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata [J]. Environ. Microbiol., 2002, 4: 433
doi: 10.1046/j.1462-2920.2002.00322.x
|
12 |
Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
doi: 10.1016/j.corsci.2016.10.025
|
13 |
Pardo A, Merino M C, Coy A E, et al. Pitting corrosion behaviour of austenitic stainless steels-combining effects of Mn and Mo additions [J]. Corros. Sci., 2008, 50: 1796
doi: 10.1016/j.corsci.2008.04.005
|
14 |
Refaey S A M, Taha F, El-Malak A M A. Corrosion and Inhibition of 316L stainless steel in neutral medium by 2-mercaptobenzimidazole [J]. Int. J. Electrochem. Sci., 2006, 1: 80
|
15 |
Albrimi Y A, Eddib A, Douch J, et al. Electrochemical behaviour of AISI 316 austenitic stainless steel in acidic media containing chloride ions [J]. Int. J. Electrochem. Sci., 2011, 6: 4614
|
16 |
Haïdopoulos M, Turgeon S, Sarra-Bournet C, et al. Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications [J]. J. Mater. Sci. Mater. Med., 2006, 17: 647
doi: 10.1007/s10856-006-9228-4
|
17 |
Wang P X, Yu Z C, Li B Y, et al. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas [J]. Microb. Cell Fact., 2015, 14: 11.
doi: 10.1186/s12934-015-0194-8
|
18 |
Bosi E, Fondi M, Maida I, et al. Genome-scale phylogenetic and DNA composition analyses of Antarctic Pseudoalteromonas bacteria reveal inconsistencies in current taxonomic affiliation [J]. Hydrobiologia, 2015, 761: 85
doi: 10.1007/s10750-015-2396-9
|
19 |
Guo N, Zhao Q Y, Hui X R, et al. Enhanced corrosion protection action of biofilms based on endogenous and exogenous bacterial cellulose [J]. Corros. Sci., 2022, 194: 109931
doi: 10.1016/j.corsci.2021.109931
|
20 |
Zhang Z Q, Chen Z B, Dong Q J, et al. Galvanic corrosion behavior of low alloy steel, stainless steel and Al-Mg alloy in simulated deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 417
|
20 |
张泽群, 陈质彬, 董其娟 等. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 417
|
21 |
Zhang L H, Li C J, Pan L, et al. Corrosion behavior of 316L stainless steel in simulated oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 625
|
21 |
张龙华, 李长君, 潘磊 等. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 625
|
22 |
Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
|
22 |
张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|