Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 458-463    DOI: 10.11902/1005.4537.2021.118
  综合评述 本期目录 | 过刊浏览 |
焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状
张克乾, 张华(), 李扬, 洪业, 贺诚
中国原子能科学研究院 北京 102413
Corrosion of Electrode Materials in Joule Heated Melter
ZHANG Keqian, ZHANG Hua(), LI Yang, HONG Ye, HE Cheng
China Institute of Atomic Energy, Beijing 102413, China
全文: PDF(3710 KB)   HTML
摘要: 

综述了材料、温度、电流三个影响因素对陶瓷电熔炉电极材料在熔融玻璃中腐蚀行为的影响。熔融玻璃中,Inconel 693样品表面会形成一层致密的α-Al2O3膜,耐腐蚀性比Inconel 690更好;随着温度的变化,材料内部Cr扩散速率和表面Cr2O3溶解速率的变化决定了材料的腐蚀速率;在有电流存在的情况下,Inconel 690和693合金在熔融玻璃中钝化膜被破坏,耐腐蚀性变差。提出了应进一步结合电熔炉实际运行工况来研究材料的腐蚀行为及机理。

关键词 电极材料腐蚀行为熔融玻璃陶瓷电熔炉    
Abstract

The corrosion of ceramic furnace electrode materials in molten glass is discussed from three aspects: material, temperature and applied current. The results show that Inconel 693 forms an Al2O3 scale in molten glass. The corrosion resistance of Inconel 693 is better than that of Inconel 690. With the change of temperature, the corrosion rate of the material is determined by the Cr diffusion rate inside the material and the Cr2O3 dissolution rate on the surface. In the presence of electric current, the passive film of Inconel alloy in molten glass is destroyed and its corrosion resistance becomes poor. It is also suggested that the corrosion behavior and the relevant corrosion mechanism of materials should be investigated in combination with the practical operation conditions of JHM in the future.

Key wordselectrode material    corrosion behavior    molten glass    joule heated melter
收稿日期: 2021-05-26     
ZTFLH:  TG172  
通讯作者: 张华     E-mail: zhanghua_32@ciae.ac.cn
Corresponding author: ZHANG Hua     E-mail: zhanghua_32@ciae.ac.cn
作者简介: 张克乾,男,1991年生,博士,副研究员

引用本文:

张克乾, 张华, 李扬, 洪业, 贺诚. 焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
Keqian ZHANG, Hua ZHANG, Yang LI, Ye HONG, Cheng HE. Corrosion of Electrode Materials in Joule Heated Melter. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 458-463.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.118      或      https://www.jcscp.org/CN/Y2022/V42/I3/458

图1  Inconel 625合金在熔融硼硅酸盐玻璃中的腐蚀[4]
AlloyNiCrFeAlNb
Inconel 690>5827~317~11------
Inconel 693Bal.27~312.5~62.5~40.5~2.5
表1  Inconel 690与Inconel 693合金成分对比[5]
图2  Inconel 690和Inconel 693合金腐蚀表面SEM微观图[12]
图3  Inconel 693合金在硼硅酸盐熔融玻璃中的腐蚀[13]
图4  Inconel 693合金在1000 ℃铁磷酸盐玻璃中腐蚀7 d的SEM像[5]
图5  Inconel 690和Inconel 693合金在1050 ℃铁磷酸盐玻璃中腐蚀7 d的SEM像[5]
图6  Inconel 693合金在铁磷酸盐玻璃溶液中的腐蚀SEM像[18]
1 Ojovan M I. Handbook of Advanced Radioactive Waste Conditioning Technologies [M]. Cambridge: Woodhead Publishing, 2011
2 Li Y S, Zhang S D, Xian L, et al. Progress in research and development of vitrification technology for high-level radioactive liquid waste at CIAE [J]. At. Energy Sci. Technol., 2020, 54: 126
2 李玉松, 张生栋, 鲜亮等. CIAE高放废液固化技术研发进展 [J]. 原子能科学技术, 2020, 54: 126
3 Zhang W, Dong H L, Ruan M Z. Applicability analysis of ceramic melter technology in vitrification of high level radioactive liquid waste from spent fuel reprocessing of nuclear power plants [J]. Radiat. Prot., 2019, 39: 322
3 张威, 董海龙, 阮苠秩. 陶瓷电熔炉在动力堆高放废液玻璃固化中适用性分析 [J]. 辐射防护, 2019, 39: 322
4 Sengupta P, Mittra J, Kale G B. Interaction between borosilicate melt and Inconel [J]. J. Nucl. Mater., 2006, 350: 66
5 Hsu J H, Newkirk J W, Kim C W, et al. Corrosion of Inconel 690 and Inconel 693 in an iron phosphate glass melt [J]. Corros. Sci., 2013, 75: 148
6 Giggins C S, Pettit F S. Oxidation of Ni‐Cr‐Al alloys between 1000 ℃ and 1200 ℃ [J]. J. Electrochem. Soc., 1971, 118: 1782
7 Maruyama T, Ani M H B, Ueda M, et al. Quantitative evaluation of the effect on the Al addition on the internal-external oxidation in Ni-Cr alloys [A]. Proceedings of High Temperature Corrosion and Materials Chemistry: Proceedings of the International Symposium [C]. New Jersey, 2003: 96
8 Campbell F C. ASM Handbook: Alloy Phase Diagrams [M]. Materials Park: ASM International, 2012
9 Sims C T. Niobium in superalloys: A perspective [J]. High Temp. Technol., 1984, 4: 185
10 Natesan K, Baxter D J. Stability of chromium oxide scales in oxygen-sulfur containing environments at elevated temperatures [A]. Proceedings of TMS-AIME Fall Meeting [C]. Detroit, 1984: 237
11 Zhu D M, Kim C W, Day D E. Corrosion behavior of Inconel 690 and 693 in an iron phosphate melt [J]. J. Nucl. Mater., 2005, 336: 47
12 Halder R, Sengupta P, Abraham G, et al. Interaction of alloy 693 with borosilicate glass at high temperature [J]. Mater. Today, 2016, 3: 3025
13 Chen T F, Tiwari G P, Iijima Y, et al. Volume and grain boundary diffusion of chromium in Ni-base Ni-Cr-Fe alloys [J]. Mater. Trans., 2003, 44: 40
14 Chen T F, Iijima Y, Hirano K I, et al. Diffusion of chromium in nickel-base Ni-Cr-Fe alloys [J]. J. Nucl. Mater., 1989, 169: 285
15 Tan T C, Chin D T. A.c. corrosion of nickel in sulphate solutions [J]. J. Appl. Electrochem., 1988, 18: 831
16 Wendt J L, Chin D T. The a.c. corrosion of stainless steel-II. The breakdown of passivity of ss304 in neutral aqueous solutions [J]. Corros. Sci., 1985, 25: 889
17 Gan H, Buechele A C, Kim C W, et al. Corrosion of Inconel-690 electrodes in waste glass melts [J]. MRS Online Proc. Libr., 1999, 556: 287
18 Hsu J H, Newkirk J W, Kim C W, et al. The performance of Inconel 693 electrodes for processing an iron phosphate glass melt containing 26 wt.% of a simulated low activity waste [J]. J. Nucl. Mater., 2014, 444: 323
19 Dutta R S, Bhandari S, Chakravarthy Y, et al. Development of aluminide coatings on Ni-Cr-Fe based superalloy 690 substrates for high temperature applications using atmospheric plasma spraying technique [J]. Mater. Today, 2016, 3: 3018
20 Dharini T, Kuppusami P, Panda P, et al. Nanomechanical behaviour of Ni-YSZ nanocomposite coatings on superalloy 690 as diffusion barrier coatings for nuclear applications [J]. Ceram. Int., 2020, 46: 24183
21 Yusufali C, Kshirsagar R J, Jagannath, et al. Surface studies on aluminized and thermally oxidized Alloy 690 substrates interacted with nitrate-based simulated nuclear waste and sodium borosilicate melt using Raman spectroscopy and X-ray photoelectron spectroscopy [J]. Surf. Coat. Technol., 2015, 266: 31
22 Dutta R S, Yusufali C, Paul B, et al. Formation of diffusion barrier coating on superalloy 690 substrate and its stability in borosilicate melt at elevated temperature [J]. J. Nucl. Mater., 2013, 432: 72
[1] 杨永, 张庆保, 朱万成, 罗艳龙. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[2] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[3] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[4] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[5] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[6] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[7] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[8] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[9] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[10] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[12] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[13] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[14] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[15] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.