Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 667-672    DOI: 10.11902/1005.4537.2020.210
  研究报告 本期目录 | 过刊浏览 |
组织配分对双相不锈钢微区极化行为及点蚀抗性的影响
汪毅聪, 胡骞, 黄峰, 刘静()
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 湖北省海洋工程材料及 服役安全工程技术研究中心 武汉 430081
Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel
WANG Yicong, HU Qian, HUANG Feng, LIU Jing()
State Key Laboratory of Refractories and Metallurgy, Hubei Engineering Technology Research Center of Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(4131 KB)   HTML
摘要: 

通过固溶处理制备了具有不同基体组成相比例的2205双相不锈钢试样,利用宏观电化学测试和微区极化测试,结合腐蚀形貌分析研究了组织配分对2205双相不锈钢微区极化行为及点蚀抗性的影响,探讨了αγ单相微区电化学活性对2205双相不锈钢点蚀抗性的影响机制。结果表明:固溶处理改变了合金元素在αγ两相中的分配以及两相的占比,对两相的微区电化学活性及两相间的电偶效应产生影响。当α相占比为60.8%时,两相具有最高的自腐蚀电位、最低的自腐蚀电流密度和最弱的微电偶效应,此时2205双相不锈钢具有最高的点蚀抗性。

关键词 双相不锈钢点蚀组织配分微区极化    
Abstract

2205 Duplex stainless steels (DSS) with different volume ratio of ferrite to austenite were prepared by solution treatment. Then their micro-polarization behavior and pitting resistance were studied by means of electrochemical measurement, micro-polarization measurement and corrosion morphology analysis. The effect of electrochemical activity of single α and γ phase on pitting resistance of 2205 DSS was also examined. Results show that the alloying element content and phase fraction of two phases changed after solution treatment, which influenced the micro-electrochemical activity of two phases and galvanic effect between two phases. When the phase fraction of α is 60.8%, the steel of two phases showed the highest corrosion potential, the lowest corrosion current density and the weakest galvanic effect. The 2205 DSS, in this case, possesses the best pitting resistance.

Key wordsduplex stainless steel    pitting    microstructure partition    micro-polarization
收稿日期: 2020-10-26     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51871171)
通讯作者: 刘静     E-mail: liujing@wust.edu.cn
Corresponding author: LIU Jing     E-mail: liujing@wust.edu.cn
作者简介: 汪毅聪,男,1997年生,硕士生

引用本文:

汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对双相不锈钢微区极化行为及点蚀抗性的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
Yicong WANG, Qian HU, Feng HUANG, Jing LIU. Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 667-672.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.210      或      https://www.jcscp.org/CN/Y2021/V41/I5/667

图1  2205双相不锈钢的金相组织
SampleSolution temperature / ℃PhaseVolume fraction / %Average mass fraction / %
CrMoN
1#1000α55.323.004.300.05
γ44.720.132.490.407
2#1050α57.723.114.200.05
γ42.320.782.230.431
3#1100α60.822.903.850.05
γ39.220.722.330.465
4#1150α62.922.783.730.05
γ37.121.352.350.507
5#1200α64.823.513.470.05
γ35.221.422.390.518
6#1250α67.522.463.660.05
γ32.520.862.360.561
表1  6种试样中两组成相占比及主要合金元素含量
图4  恒电位极化后6种试样表面点蚀形貌
图5  6种试样中两组成相上的点蚀密度统计
图6  1#、3#和5#试样中两组成相上的微区极化曲线
图7  3#试样微区极化测试后两组成相上的腐蚀形貌
图2  6种试样在60 ℃ 3.5%NaCl溶液中的极化曲线
图3  不同2205双相不锈钢试样的点蚀电位
SamplePhaseEcorr / VIcorr / μA·cm-2
1#α-0.725.66
γ-0.533.44
3#α-0.553.07
γ-0.412.56
5#α-0.673.86
γ-0.542.82
表2  1#、3#和5#试样微区极化曲线拟合参数
图8  不同试样中α和γ两相PREN和对应的点蚀电位
SampleIcorr1μA·cm-2Icorr2μA·cm-2Ecorr2-Ecorr1VA2 / A1
1#5.663.440.190.81
3#3.072.560.140.64
5#3.862.820.130.54
表3  影响两相间微电偶效应的部分参数
1 Feng H, Zhou X Y, Liu H, et al. Development and trend of hyper duplex stainless steels [J]. J. Iron Steel Res., 2015, 27(4): 1
1 丰涵, 周晓玉, 刘虎等. 特超级双相不锈钢的发展现状及趋势 [J]. 钢铁研究学报, 2015, 27(4): 1
2 Huang A, Chen J, Song J, et al. Research progress of economic type duplex stainless steel welding [J]. Hot Work. Technol., 2016, 45(5): 7
2 黄澳, 陈吉, 宋见等. 经济型双相不锈钢焊接的研究进展 [J]. 热加工工艺, 2016, 45(5): 7
3 Liu Z Y, Li C G, Zhao Y, et al. Control on microstructures and properties of economical duplex stainless steel and its manufacturing technology [J]. Angang Technol., 2016, (2): 1
3 刘振宇, 李成刚, 赵岩等. 节约型双相不锈钢组织性能控制与制造技术 [J]. 鞍钢技术, 2016, (2): 1
4 Zhang W Y, Hou S Z. Progress of the application of duplex stainless steel at home and abroad [J]. Mag. Equip. Mach., 2015, (3): 62
4 张文毓, 侯世忠. 国内外双相不锈钢的应用进展 [J]. 装备机械, 2015, (3): 62
5 Wang G, Guo Y D, Guo L, et al. Development of duplex stainless steel, characteristics and applications [J]. Sci. Technol. Innovat., 2015, (7): 91
5 王刚, 郭幼丹, 郭雷等. 双相不锈钢的发展、特点及其应用 [J]. 科技与创新, 2015, (7): 91
6 Yu H C, Yan Y H, Liu X Y, et al. Analysis on composition, properties and precipitated phases of duplex stainless steel [J]. Spec. Steel, 2019, 40(3): 53
6 于海成, 严与辉, 刘小杨等. 双相不锈钢成分、性能及析出相分析 [J]. 特殊钢, 2019, 40(3): 53
7 Otake A, Muto I, Chiba A, et al. Pitting at the δ/γ boundary of type 304 stainless steel in NaCl solution: The role of oxide inclusions and segregation [J]. J. Electrochem. Soc., 2017, 164: C991
8 Zheng S Q, Li C Y, Qi Y M, et al. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion [J]. Corros. Sci., 2013, 67: 20
9 Jia D B, Zhong L C, Yu J K, et al. Effects of electropulsing on inclusion size and corrosion-resistance of 304 stainless steel [J]. Mater. Sci. Technol., 2020, 36: 1263
10 Fan J W, He C C, Li J, et al. Effect of aging treatment on the pitting corrosion resistance of 2205 duplex stainless steel [J]. Shanghai Met., 2011, 33(4): 33
10 范君伟, 何晨冲, 李杰等. 时效处理对2205双相不锈钢耐点蚀性能的影响 [J]. 上海金属, 2011, 33(4): 33
11 Jastej S, Shahi A S. Impact toughness, fatigue crack growth and corrosion behavior of thermally aged UNS S32205 duplex stainless steel [J]. Trans. Indian Inst. Met., 2019, 72: 1497
12 Zhang L H. Study on the corrosion behavior of economical duplex stainless steel 2101 [D]. Shanghai: Fudan University, 2010: 43
12 张丽华. 经济型双相不锈钢2101的腐蚀行为研究 [D]. 上海: 复旦大学, 2010: 43
13 Zhang Y H, Hu Q, Dai M J, et al. Investigation of micro-electrochemical activities of oxide inclusions and microphases in duplex stainless steel and the implication on pitting corrosion [J]. Mater. Corros., 2020, 71: 876
14 Zhang Z Y, Han D, Jiang Y M, et al. Microstructural evolution and pitting resistance of annealed lean duplex stainless steel UNS S32304 [J]. Nucl. Eng. Des., 2012, 243: 56
15 Chen L D, Tan H, Wang Z Y, et al. Influence of cooling rate on microstructure evolution and pitting corrosion resistance in the simulated heat-affected zone of 2304 duplex stainless steels [J]. Corros. Sci., 2012, 58: 168
16 Lu S W, Hu Q, Liu J, et al. Parameter optimization for capillary microelectrode preparation [J]. J. Wuhan Univ. Sci. Technol., 2019, 42(4): 100
16 卢赛文, 胡骞, 刘静等. 毛细管微电极制备参数优化 [J]. 武汉科技大学学报, 2019, 42(4): 100
17 Zhang Z Y, Wang Z Y, Jiang Y M, et al. Effect of post-weld heat treatment on microstructure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds [J]. Corros. Sci., 2012, 62: 42
18 Zhang Z Y, Zhang H Z, Zhao H, et al. Effect of prolonged thermal cycles on the pitting corrosion resistance of a newly developed LDX 2404 lean duplex stainless steel [J]. Corros. Sci., 2016, 103: 189
19 Guo Y J, Sun T Y, Hu J C, et al. Microstructure evolution and pitting corrosion resistance of the Gleeble-simulated heat-affected zone of a newly developed lean duplex stainless steel 2002 [J]. J. Alloy. Compd., 2016, 658: 1031
20 Ha H Y, Jang M H, Lee T H, et al. Interpretation of the relation between ferrite fraction and pitting corrosion resistance of commercial 2205 duplex stainless steel [J]. Corros. Sci., 2014, 89: 154
21 Ha H Y, Jang M H, Lee T H, et al. Understanding the relation between phase fraction and pitting corrosion resistance of UNS S32750 stainless steel [J]. Mater. Charact., 2015, 106: 338
[1] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[2] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[3] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[4] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[5] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[6] 杨众魁, 史艳华, 乔忠立, 梁平, 王玲. ClO2-对S2205不锈钢在Cl-介质中点蚀初期行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
[7] 战栋栋, 王成, 钱吉裕, 王文, 周仝, 朱圣龙, 王福会. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[8] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[9] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[12] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[13] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[14] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[15] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.