Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (3): 362-368    DOI: 10.11902/1005.4537.2020.073
  研究报告 本期目录 | 过刊浏览 |
温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响
冉斗1,2, 孟惠民1, 李全德1,2,3(), 巩秀芳2,3, 倪荣2,3, 姜英2,3, 龚显龙2,3, 戴君2,3, 隆彬2,3()
1.北京科技大学新材料技术研究院 北京 100083
2.长寿命高温材料国家重点实验室 德阳 618000
3.东方汽轮机有限公司 德阳 618000
Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution
RAN Dou1,2, MENG Huimin1, LI Quande1,2,3(), GONG Xiufang2,3, NI Rong2,3, JIANG Ying2,3, GONG Xianlong2,3, DAI Jun2,3, LONG Bin2,3()
1.Institute of Advance Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory of Long-life High Temperature Materials, Deyang 618000, China
3.Dongfang Turbine Co. , Ltd. , Deyang 618000, China
全文: PDF(9204 KB)   HTML
摘要: 

采用开路电位、动电位极化、电化学阻抗谱等电化学测试方法,并结合激光共聚焦显微镜和扫描电镜能谱面扫描表征手段,研究了温度对汽轮机末级叶片用钢14Cr12Ni3WMoV在0.02 mol/L NaCl溶液中腐蚀行为的影响。结果表明:随着温度的升高,14Cr12Ni3WMoV不锈钢腐蚀倾向和腐蚀速率均增大,点蚀敏感性增强,自修复能力减弱,材料耐蚀性下降;材料表面点蚀坑随着温度的升高沿径向的发展变快,而沿纵向的发展减缓;点蚀发生时,材料发生选择性溶解,其中Fe和Ni溶解较快,而Cr、W、Mo和V因溶解缓慢在腐蚀坑内发生富集,并且温度的变化对Cr、W、Mo和V的富集没有明显影响。

关键词 电化学腐蚀不锈钢叶片汽轮机温度钝化膜    
Abstract

The effect of temperature on the corrosion behavior of 14Cr12Ni3WMoV stainless steel for the final stage blade of steam turbine in 0.02 mol/L NaCl solution was studied by means of electrochemical techniques including open circuit potential measurement, potentiodynamic polarization measurement and electrochemical impedance spectroscopy, as well as laser scanning confocal microscopy and scanning electron microscopy coupled with energy dispersive spectroscopy. The results show that with the increasing temperature, both the corrosion tendency and corrosion rate of 14Cr12Ni3WMoV stainless steel increase. Meanwhile, its pitting sensitivity increases with weakened self-repairing ability of its passivation film, thus the corrosion resistance of the steel decreases. The corrosion pit develops faster in the radial direction,but its development in depth slows down with the increasing temperature. When pitting occurs, Fe, Cr, Ni, W, Mo and V in the steel selectively dissolve, demonstrating that Fe and Ni dissolve quickly, while Cr, W, Mo and V are enriched in the corrosion pit due to their slow dissolution, whereas the change of temperature has no obvious effect on the enrichment of Cr, W, Mo and V.

Key wordselectrochemistry corrosion    stainless steel    blade    steam turbine    temperature    passivation film
收稿日期: 2020-04-23     
ZTFLH:  TG174  
基金资助:四川省科技计划应用基础研究项目(2019YJ0699);长寿命高温材料国家重点实验室开放课题(DTCC28EE190230)
通讯作者: 李全德,隆彬     E-mail: quandelee@126.com;longbin@dongfang.com
Corresponding author: LI Quande,LONG Bin     E-mail: quandelee@126.com;longbin@dongfang.com
作者简介: 冉斗,男,1995年生,硕士生

引用本文:

冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
Dou RAN, Huimin MENG, Quande LI, Xiufang GONG, Rong NI, Ying JIANG, Xianlong GONG, Jun DAI, Bin LONG. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 362-368.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.073      或      https://www.jcscp.org/CN/Y2021/V41/I3/362

图1  14Cr12Ni3WMoV不锈钢在不同温度下0.02 mol/L NaCl溶液中的开路电位
图2  14Cr12Ni3WMoV不锈钢在不同温度下0.02 mol/L NaCl溶液中电化学测试结果
Temperature / ℃Ecorr / VIcorr / A·cm-2Eb / V
40-0.1820.55×10-60.156
60-0.1741.07×10-60.118
80-0.2061.39×10-60.084
表1  14Cr12Ni3WMoV不锈钢在不同温度下0.02 mol/L NaCl溶液中电化学参数
图3  14Cr12Ni3WMoV不锈钢在不同温度下0.02 mol/L NaCl溶液中测得的电化学阻抗谱
图4  不同温度下EIS曲线拟合所用的等效电路
Temperature℃RsΩ·cm2QfRfΩ·cm2
Y0 / Ω-1·cm-2·Snn
40186.43.72×10-50.905.27×105
60142.74.16×10-50.889.12×104
80139.66.61×10-50.853.62×104
表2  不同温度下电化学阻抗谱的拟合结果
图5  14Cr12Ni3WMoV不锈钢在不同温度下0.02 mol/L NaCl溶液中的腐蚀形貌及三维形貌
图6  14Cr12Ni3WMoV不锈钢在不同温度下0.02 mol/L NaCl溶液中最大点蚀坑的深度和孔径
图7  14Cr12Ni3WMoV不锈钢试样在80 ℃下形成腐蚀坑的元素分布
图8  14Cr12Ni3WMoV不锈钢试样在40 ℃下形成腐蚀坑的元素分布
1 Wang W Z, Xuan F Z, Zhu K L, et al. Failure analysis of the final stage blade in steam turbine [J]. Eng. Fail. Anal., 2007, 14: 632
2 Hu P. Development of anti-erosion surface treatments used in last blades of steam turbine [J]. Surf. Technol., 2008, 37(6): 78
2 胡平. 汽轮机末级叶片表面防水蚀处理工艺及发展 [J]. 表面技术, 2008, 37(6): 78
3 Aliabadi M A F, Lakzian E, Khazaei I, et al. A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade [J]. Energy, 2020, 190: 116397
4 Rodríguez J A, Castro L, Tejeda A L, et al. Fatigue of steam turbine blades at resonance conditions [J]. Eng. Fail. Anal., 2019, 104: 39
5 Perkins K M, Bache M R. Corrosion fatigue of a 12%Cr low pressure turbine blade steel in simulated service environments [J]. Int. J. Fatigue, 2005, 27: 1499
6 Schönbauer B M, Perlega A, Stanzl-Tschegg S E. Pit-to-crack transition and corrosion fatigue of 12%Cr steam turbine blade steel [A]. 13th International Conference on Fracture [C]. Beijing, 2013
7 Katinić M, Kozak D, Gelo I, et al. Corrosion fatigue failure of steam turbine moving blades: A case study [J]. Eng. Fail. Anal., 2019, 106: 104136
8 Kim H. Crack evaluation of the fourth stage blade in a low-pressure steam turbine [J]. Eng. Fail. Anal., 2011, 18: 907
9 Ziegler D, Puccinelli M, Bergallo B, et al. Investigation of turbine blade failure in a thermal power plant [J]. Case Stud. Eng. Fail. Anal., 2013, 1: 192
10 Adnyana D N. Corrosion fatigue of a low-pressure steam turbine blade [J]. J. Fail. Anal. Prev., 2018, 18: 162
11 Mazur Z, Garcia-Illescas R, Aguirre-Romano J, et al. Steam turbine blade failure analysis [J]. Eng. Fail. Anal., 2008, 15: 129
12 Stefanoni M, Angst U, Elsener B. Local electrochemistry of reinforcement steel-Distribution of open circuit and pitting potentials on steels with different surface condition [J]. Corros. Sci., 2015, 98: 610
13 Arjmand F, Zhang L F, Wang J M. Effect of temperature, chloride and dissolved oxygen concentration on the open circuit and transpassive potential values of 316L stainless steel at high-temperature pressurized water [J]. Nucl. Eng. Des., 2017, 322: 215
14 Rui J Q, Li J, Sun H D, et al. Influence of pH on the electrochemical bahavior of 00Cr15Ni7Mo2Cu2 supermartensitic stainless steel in 3.5%NaCl solutions [J]. Adv. Mater. Res., 2012, 581/582: 1058
15 Ebrahimi N, Momeni M, Kosari A, et al. A comparative study of critical pitting temperature (CPT) of stainless steels by electrochemical impedance spectroscopy (EIS), potentiodynamic and potentiostatic techniques [J]. Corros. Sci., 2012, 59: 96
16 Shi L, Zhang Z J, Gao Y. Mechanism and research methods of pitting corrosion of stainless steels [J]. Mater. Rev., 2015, 29(23): 79
16 石林, 郑志军, 高岩. 不锈钢的点蚀机理及研究方法 [J]. 材料导报, 2015, 29(23): 79
17 Zhang H R, Hao Y. Corrosion behavior of AZ91D magnesium alloy in Cl- solution [J]. Res. Stud. Found. Equip., 2007, (3): 19
17 张汉茹, 郝远. AZ91D镁合金在含Cl-溶液中腐蚀机理的研究 [J]. 铸造设备与工艺, 2007, (3): 19
18 Wang Y F, Xie F Q. Corrosion behaviors of super 13Cr tubing steels in NaCl solution with different concentration [J]. Mater. Rev., 2018, 32: 2847
18 王毅飞, 谢发勤. 超级13Cr油管钢在不同浓度Cl-介质中的腐蚀行为 [J]. 材料导报, 2018, 32: 2847
19 Wei X, Dong J H, Tong J, et al. Influence of temperature on pitting corrosion resistance of Cr26Mo1 ultra pure high chromium ferrite stainless steel in 3.5%NaCl solution [J]. Acta Metall. Sin., 2012, 48: 502
19 魏欣, 董俊华, 佟健等. 温度对Cr26Mol超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响 [J]. 金属学报, 2012, 48: 502
20 Rui J Q. Corrosion and passivity behavior of 15Cr super martensitic stainless steel [D]. Kunming: Kunming University of Science and Technology, 2013
20 芮家群. 15Cr超级马氏体不锈钢的腐蚀及钝化行为的研究 [D]. 昆明: 昆明理工大学, 2013
21 Hu G, Xu C C, Zhang X S. Composition and structure of the passive film of 304 stainless steel in an occluded solution [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.), 2003, 30: 20
21 胡钢, 许淳淳, 张新生. 304不锈钢在闭塞区溶液中钝化膜组成和结构性能 [J]. 北京化工大学学报 (自然科学版), 2003, 30: 20
22 Wu W W, Jiang Y M, Liao J X, et al. Influence of Cl- on critical pitting temperature for 304 and 316 stainless steels [J]. Corros. Sci. Prot. Technol., 2007, 19: 16
22 吴玮巍, 蒋益明, 廖家兴等. Cl离子对304、316不锈钢临界点蚀温度的影响 [J]. 腐蚀科学与防护技术, 2007, 19: 16
23 Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
23 王标, 杜楠, 张浩等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338
24 Lyu N X, Liu K P, Yin C X, et al. Effect of HCO3- on passivation and pitting behavior of super 13Cr martensitic stainless steel [J]. Surf. Technol., 2019, 48(5): 36
24 吕乃欣, 刘开平, 尹成先等. HCO3-对超级13Cr马氏体不锈钢钝化行为及点蚀行为的影响 [J]. 表面技术, 2019, 48(5): 36
25 Wang Z. Investigation of the corrosion behavior and passive film degradation for austenitic stainless steel in H2S-containing environment [D]. Beijing: University of Science and Technology Beijing, 2018
25 王竹. 奥氏体不锈钢在H2S环境下的腐蚀行为与钝化膜演化研究 [D]. 北京: 北京科技大学, 2018
26 Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials [J]. Appl. Surf. Sci., 2017, 396: 144
27 Cheng C Q, Zhang Z P, Li R, et al. Effect of temperature on pitting corrosion of 430 stainless steel under dry and wet cycle of droplet [J]. Surf. Technol., 2019, 48(6): 245
27 程从前, 张志鹏, 李然等. 温度对液滴干湿循环下430不锈钢点蚀的影响 [J]. 表面技术, 2019, 48(6): 245
28 Kong D C, Ni X Q, Dong C F, et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells [J]. Electrochim. Acta, 2018, 276: 293
29 Li H Y. Passivity and pitting behavior of ultra high strength martensitic stainless steel [D]. Beijing: University of Science and Technology Beijing, 2017
29 李慧艳. 超高强度马氏体不锈钢钝化与点蚀行为研究 [D]. 北京: 北京科技大学, 2017
[1] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[2] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[3] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[4] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[5] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[6] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[7] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[8] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[9] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[10] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[11] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[12] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[13] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[14] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[15] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.