Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (3): 353-361    DOI: 10.11902/1005.4537.2020.096
  研究报告 本期目录 | 过刊浏览 |
三氯乙酸溶液中咪唑啉在钢表面的吸附及缓蚀行为
王丽姿, 李向红()
西南林业大学化学工程学院 昆明 650224
Adsorption and Inhibition Behavior of Imidazoline on Steel Surface in Trichloroacetic Acid Solution
WANG Lizi, LI Xianghong()
College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
全文: PDF(5498 KB)   HTML
摘要: 

采用失重法、动电位极化曲线、电化学阻抗谱探究了在三氯乙酸 (Cl3CCOOH) 溶液中0~500 mg/L咪唑啉 (IM) 缓蚀剂对冷轧钢的缓蚀性能,并通过SEM、AFM及接触角测试表征钢表面微观形貌结构和亲水/疏水性。采用量子化学理论探讨了IM在钢表面的吸附方式及质子化作用对缓蚀剂分子吸附行为的影响。结果表明:IM能有效减缓冷轧钢在0.10 mol/L Cl3CCOOH溶液中的腐蚀,20 ℃下500 mg/L缓蚀剂 IM的缓蚀率超过95%。IM的吸附服从Langmuir吸附等温式,在钢表面发生的吸附作用为混合吸附。动电位极化曲线显示IM属于混合抑制型缓蚀剂。冷轧钢在未添加和添加一定缓蚀剂IM的0.10 mol/L Cl3CCOOH中的Nyquist图谱均由高频区的容抗弧和低频区的感抗弧构成;加入IM后电荷转移电阻、电感电阻和电感值均显著增加。在添加IM的溶液中,钢表面腐蚀程度急剧降低,而疏水性增强。量子化学计算表明,IM易发生质子化生成p-IM,质子化后给电子能力减弱,接受电子能力加大。

关键词 咪唑啉三氯乙酸缓蚀吸附量子化学计算    
Abstract

The corrosion inhibition performance of imidazoline (IM) in trichloroacetic acid (Cl3CCOOH) solution on cold-rolled steel sheet was studied by means of mass loss method, potential polarization curve measurement and electrochemical impedance spectroscopy (EIS) as well as SEM and AFM. The hydrophilicity/hydrophobicity of the steel after immersion in the IM containing solution were assessed by contact angle measurement. While the adsorption mode of IM on the steel surface and the effect of protonation on the adsorption behavior of IE molecules are studied by quantum chemistry. The results show that IM can effectively slow down the corrosion of the cold-rolled steel in 0.10 mol/L Cl3CCOOH solution, and the corrosion inhibition efficiency exceeds 95% in the solution with 500 mg/L IM at 20 ℃. The adsorption of Cl3CCOOH on the steel surface is a mixed adsorption following the Langmuir adsorption isotherm. The Nyquist spectrum of the steel in 0.10 mol/L Cl3CCOOH solution without and with addition of IM is all composed of capacitive reactance arc in the high frequency region and inductive arc in the low frequency region. However, after IM addition, the charge transfer resistance, inductor resistance and inductance value all increase significatly, meanwhile, the corrosion degree of the steel drops sharply. The contact angle test result showed that after IM addition, the hydrophobicity of the steel surface increased. Quantum chemical calculation results show that IM could easy be protonized to generate p-IM, therewith weakened its ability as electron donor whereas, strengthened that as electron acceptor.

Key wordsimidazoline    steel    trichloroacetic acid    inhibition    adsorption    quantum chemical calculation
收稿日期: 2020-06-08     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51761036);云南省中青年学术和技术带头人培养项目(2015HB049);云南省万人计划“青年拔尖人才”专项(51900109)
通讯作者: 李向红     E-mail: xianghong-li@163.com
Corresponding author: LI Xianghong     E-mail: xianghong-li@163.com
作者简介: 王丽姿,女,1995年生,硕士生

引用本文:

王丽姿, 李向红. 三氯乙酸溶液中咪唑啉在钢表面的吸附及缓蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 353-361.
Lizi WANG, Xianghong LI. Adsorption and Inhibition Behavior of Imidazoline on Steel Surface in Trichloroacetic Acid Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 353-361.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.096      或      https://www.jcscp.org/CN/Y2021/V41/I3/353

图1  在0.10 mol/L Cl3CCOOH溶液中IM对钢的ηw和c的关系曲线
图2  0.10 mol/L Cl3CCOOH溶液中IM在实验钢表面的吸附等温方程式
T / ℃r 2SlopeK / L·mg-1K / L·mol-1ΔG0 / kJ·mol-1
200.99971.030.1167.98×103-31.7
300.99961.074.5783.30×105-42.1
400.99591.120.2521.81×104-36.0
500.98271.190.0694.98×103-33.7
表1  各实验温度下c/θ-c直线回归参数及ΔG0
图3  冷轧钢在20 ℃下Cl3CCOOH溶液中的动电位极化曲线
cmg·L-1EcorrmVbcmV·dec-1ba mV·dec-1IcorrµA·cm-2ηp%
0-339-3051281538---
50-334-20810524584.1
250-354-30110612292.1
500-351-262785196.7
表2  冷轧钢在20 ℃下Cl3CCOOH溶液中的腐蚀电化学参数
图4  冷轧钢在20 ℃下Cl3CCOOH溶液中的Nyquist谱
图5  冷轧钢在Cl3CCOOH溶液体系中的EIS等效电路
c / mg/LRs / Ω·cm2Rt / Ω·cm2RL / Ω·cm2L / H·cm2nQ / μF·cm-2ηR / %
06.816.632.8930.84394---
507.9101.5175.719920.867481.3
2507.3197.7350.730080.807390.6
5007.7280.2430.571630.816692.4
表3  冷轧钢在20 ℃下Cl3CCOOH溶液中的EIS参数
图6  冷轧钢在0.10 mol/L Cl3CCOOH 溶液中浸泡前后的SEM像
图7  冷轧钢在浸泡前后的表面3D-AFM像
图8  冷轧钢浸泡前后的表面接触角图片
图9  优化的分子结构及前线轨道分布
MoleculeEHOMO/ eVELUMO / eVΔE / eVβ / eVγ / eVs / eV-1ΔN
IM-5.1691.0226.1912.0743.0960.3230.796
p-IM-6.4640.0886.5523.1883.2760.3050.582
表4  IM的量子化学结构参数
1 Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review [J]. Corros. Sci., 2014, 86: 17
2 Song S F, Guo Y Y. The research status and progress of imidazoline inhibitors [J]. Guangdong Chem. Ind., 2016, 43(22): 91
2 宋绍富, 郭银银. 咪唑啉类缓蚀剂的研究现状及进展 [J]. 广东化工, 2016, 43(22): 91
3 Zhang K G, Xu B, Yang W Z, et al. Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution [J]. Corros. Sci., 2015, 90: 284
4 Zhao J M, Zhao Q F, Jiang R J. Relationship between structure of imidazoline derivates with corrosion inhibition performance in CO2/H2S environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 142
4 赵景茂, 赵起锋, 姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究 [J]. 中国腐蚀与防护学报, 2017, 37: 142
5 Zhang C, Duan H B, Zhao J M. Synergistic inhibition effect of imidazoline derivative and L-cysteine on carbon steel corrosion in a CO2-saturated brine solution [J]. Corros. Sci., 2016, 112: 160
6 Lu Y, Zhang C, Wang W, et al. Study of the synergistic effect between corrosion inhibitors by using fractional free volume [J]. Chem. Res. Chin. Univ., 2019, 35: 1046
7 Li Y A, Xu N, Guo X P, et al. Inhibition effect of imidazoline inhibitor on the crevice corrosion of N80 carbon steel in the CO2-saturated NaCl solution containing acetic acid [J]. Corros. Sci., 2017, 126: 127
8 Solomon M M, Umoren S A, Quraishi M A, et al. Effect of akyl chain length, flow, and temperature on the corrosion inhibition of carbon steel in a simulated acidizing environment by an imidazoline-based inhibitor [J]. J. Petrol. Sci. Eng., 2020, 187: 106801
9 Obot I B, Macdonald D D, Gasem Z M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview [J]. Corros. Sci., 2015, 99: 1
10 Hu S Q, Hu J C, Fan C C, et al. Theoretical and experimental study of corrosion inhibition performance of new imidazoline corrosion inhibitors [J]. Acta Chim. Sin., 2010, 68: 2051
10 胡松青, 胡建春, 范成成等. 新型咪唑啉缓蚀剂缓蚀性能的理论与实验研究 [J]. 化学学报, 2010, 68: 2051
11 Fan Z, Liu Z, Jing X Y, et al. Prediction of corrosion inhibition efficiency of imidazoline derivatives using fuzzy artificial neural network based on quantum chemical characteristics [J]. Chem. Ind. Eng. Prog., 2019, 38: 1961
11 范峥, 刘钊, 井晓燕等. 利用量子化学特征的模糊人工神经网络预测咪唑啉衍生物缓蚀效率 [J]. 化工进展, 2019, 38: 1961
12 Zhao J G, Zhang Y. Corrosion behavior of metallic aluminium in trichloroacetic acid [J]. Corros. Sci. Prot. Technol., 2010, 22: 184
12 赵建国, 张云. 金属铝在TCA溶液中的腐蚀 [J]. 腐蚀科学与防护技术, 2010, 22: 184
13 Sampat S S, Vora J C. Corrosion inhibition of 3s aluminium in trichloroacetic acid by methyl pyridines [J]. Corros. Sci., 1974, 14: 591
14 Desai P S, Vashi R T. Inhibitive efficiency of sulphathiazole for aluminum corrosion in trichloroacetic acid [J]. Anti-Corros. Meth. Mater., 2011, 58: 70
15 Ebenso E E, Okafor P C, Ekpe U J. Studies on the inhibition of aluminium corrosion by 2-acetylphenothiazine in chloroacetic acids [J]. Anti-Corros. Meth. Mater., 2003, 50: 414
16 Becke A D. A multicenter numerical integration scheme for polyatomic molecules [J]. J. Chem. Phys., 1988, 88: 2547
17 Lee C, Yang W T, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev., 1988, 37B: 785
18 Klamt A, Schüürmann G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient [J]. J. Chem. Soc., Perkin Trans., 1993, 2: 799
19 Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. solids. [J]. J. Am. Chem. Soc., 1916, 38: 2221
20 Mu G N, Li X H, Qu Q, et al. Synergistic effect on corrosion inhibition by cerium (IV) ion and sodium molybdate for cold rolled steel in hydrochloric acid solution [J]. Acta Chim. Sin., 2004, 62: 2386
20 木冠南, 李向红, 屈庆等. 稀土铈(IV)离子和钼酸钠在盐酸溶液中对冷轧钢的缓蚀协同效应 [J]. 化学学报, 2004, 62: 2386
21 Fernandes C M, Alvarez L X, Dos Santos N E, et al. Green synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses [J]. Corros. Sci., 2019, 149: 185
22 Zhou X Y, Zhou Y. The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation [J]. Chem. Eng. Comm., 2014, 201: 1459
23 Zhang K, Lu J M, Li J, et al. A novel approach for copper protection: UV light triggered preparation ofthe click-assembled film on copper surface [J]. Chem. Eng. J., 2020, 385: 123406
24 Cao C. On electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38: 2073
25 Deng S D, Li X H, Fu H. Nitrotetrazolium blue chloride as a novel corrosion inhibitor of steel in sulfuric acid solution [J]. Corros. Sci., 2010, 52: 3840
26 Li X H, Deng S D, Li N, et al. Inhibition effect of bamboo leaves extract on cold rolled steel in Cl3CCOOH solution [J]. J. Mater. Res. Technol., 2017, 6: 158
27 Amin M A, Abd El-Rehim S S, El-Sherbini E E F, et al. The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid: Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies [J]. Electrochim. Acta, 2007, 52: 3588
28 Lashkari M, Arshadi M R. DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate, and electric field effects [J]. Chem. Phys., 2004, 299: 131
29 Ghailane T, Balkhmima R A, Ghailane R, et al. Experimental and theoretical studies for mild steel corrosion inhibition in 1 M HCl by two new benzothiazine derivatives [J]. Corros. Sci., 2013, 76: 317
30 De Assunção Araújo Pereisa S S, Pêgas M M, Fernández T L, et al. Inhibitory action of aqueous garlic peel extract on the corrosion of carbon steel in HCl solution [J]. Corros. Sci., 2012, 65: 360
31 Singh M M, Gupta A. Corrosion behaviour of mild steel in formic acid solutions [J]. Mater. Chem. Phys., 1996, 46: 15
32 Tran T, Brown B, Nešić S, et al. Investigation of the electrochemical mechanisms for acetic acid corrosion of mild steel [J]. Corrosion, 2014, 70: 223
33 Gong M. Metallic Corrosion Theory and Corrosion Control [J]. Beijing: Chemical Industry Press, 2009: 59
33 龚敏. 金属腐蚀理论与腐蚀控制 [M]. 北京: 化学工业出版社, 2009: 59
[1] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[2] 李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[3] 戈方宇, 黄峰, 袁玮, 肖虎, 刘静. 交变载荷频率对MS X65管线钢在H2S介质中腐蚀电化学行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[4] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[5] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[6] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[7] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[8] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[9] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[10] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[11] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[12] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[13] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[14] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[15] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.