Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 87-95    DOI: 10.11902/1005.4537.2019.237
  研究报告 本期目录 | 过刊浏览 |
水下摩擦螺柱焊接头在饱和CO2中的电化学性能
戴婷1, 顾艳红1, 高辉1(), 刘凯龙1, 谢小辉2, 焦向东1
1.北京石油化工学院 深水油气管线关键技术与装备北京市重点实验室 北京 102617
2.上海理工大学能源与动力工程学院 上海 200093
Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution
DAI Ting1, GU Yanhong1, GAO Hui1(), LIU Kailong1, XIE Xiaohui2, JIAO Xiangdong1
1.Beijing Key Laboratory of Key Technologies and Equipment for Deepwater Oil and Gas Pipelines, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2.School of Energy and Power Engineering, Shanghai University of Technology, Shanghai 200093, China
全文: PDF(29865 KB)   HTML
摘要: 

以X65钢为焊接基板,16Mn钢为螺柱,利用摩擦螺柱焊 (FSW) 技术获得水下FSW 接头,研究了接头和X65钢在通入饱和CO2的NaCl溶液中的电化学腐蚀性能。利用光学显微镜观察试样的宏观和微观金相,利用SEM观测FSW接头腐蚀8 h后的腐蚀形貌,并结合XRD和EDS分析接头腐蚀产物的成分和元素。结果表明:FSW接头整体的开路电位更正、阻抗更大、腐蚀电流密度更小,说明FSW接头的耐腐蚀性整体比X65管线钢要好;FSW接头各个区域中,焊缝区和塞棒区腐蚀较轻,而上热影响区、下热影响区和母材区腐蚀较严重;FSW接头试样在饱和CO2的NaCl溶液中的腐蚀产物为Fe2O3

关键词 FSW接头X65管线钢电化学性能饱和CO2    
Abstract

The underwater friction stud welding (FSW) joint was obtained with X65 steel as substrate and 16Mn steel as stud. The electrochemical corrosion performance of the FSW joint and X65 steel in NaCl solution saturated with CO2 were studied by means of electrochemical methods, macroscopic- and microscopic-metallography, scanning electron microscope (SEM) with energy spectrum analyzer (EDS) and X-ray diffractometer (XRD). The results show that the open circuit potential of FSW joint is more positive, the impedance is larger and the corrosion current density is smaller, which indicates that the corrosion resistance of FSW joint is better than that of X65 pipeline steel. According to the microscopic metallography observation for every zone of the FSW joint, it is found that the corrosion in central welded zone is lighter, while the corrosion in upper heat affected zone, lower heat affected zone and base metal zone is more serious. The EDS and XRD results showed that the corrosion product of FSW joints is Fe2O3.

Key wordsFSW joint    X65 pipeline steel    electrochemical property    saturated CO2
收稿日期: 2019-11-19     
ZTFLH:  TG174.3  
基金资助:北京市自然科学基金(3192013)
通讯作者: 高辉     E-mail: gaohui@bipt.edu.cn
Corresponding author: GAO Hui     E-mail: gaohui@bipt.edu.cn
作者简介: 戴婷,女,1997年生,硕士生

引用本文:

戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
Ting DAI, Yanhong GU, Hui GAO, Kailong LIU, Xiaohui XIE, Xiangdong JIAO. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 87-95.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.237      或      https://www.jcscp.org/CN/Y2021/V41/I1/87

图1  FSW接头焊接实体和处理后的试件
图2  FSW接头经刻蚀后各区域金相图
图3  FSW接头硬度测试点示意图和分布图
图4  FSW和X65钢接头腐蚀不同时间的开路电位
图5  X65和FSW接头腐蚀不同时间的Nyquist和Bode图
图6  阻抗谱的等效电路图
Corrosion time / hTest pieceRs / Ω·cm2Rct / Ω·cm2CPE
2X656.621454.602.94×10-4
FSW13.970460.902.52×10-4
4X656.508827.603.01×10-4
FSW13.040431.503.25×10-4
6X656.501299.002.51×10-4
FSW11.990452.303.15×10-4
8X656.827378.502.46×10-4
FSW12.820513.603.49×10-4
表1  X65钢和FSW接头等效电路拟合结果
图7  X65钢和FSW接头腐蚀不同时间的Tafel图
Corrosion time / hX65FSW
Ecorr / VIcorr / μA·cm-2Ecorr / VIcorr / μA·cm-2
2-0.71424.998-0.74510.111
4-0.71215.465-0.73515.197
6-0.71532.215-0.72418.780
8-0.71528.349-0.71811.524
表2  X65钢和FSW接头腐蚀不同时间的拟合结果
图8  X65钢试件腐蚀不同时间后的宏观金相图
图9  FSW接头腐蚀不同时间后的宏观金相图
图10  X65钢腐蚀不同时间后的微观金相
图11  FSW接头腐蚀8 h后各区域的金相图
图12  FSW接头腐蚀8 h的XRD谱
图13  FSW接头腐蚀8 h后腐蚀产物SEM像以及EDS分析结果
1 Hynes N R J, Nagaraj J, Sujana J A J. Ultrasonic evaluation of friction stud welded AA 6063/AISI 1030 steel joints [J]. Mater. Des., 2014, 62: 118
2 Hynes N R J, Nagaraj J, Sujana J A J. Investigation on joining of aluminum and mild steel by friction stud welding [J]. Mater. Manufactur. Proc., 2012, 27: 1409
3 Morikawa K, Kawai G, Ochi H, et al. Strength of 2017 aluminium alloy stud joints by friction welding [J]. Weld. Int., 2013, 27: 18
4 Julian R D P, Mukherjee P, Verl A. Automatic close-optimal workpiece positioning for robotic manufacturing [J]. Proced. CIRP, 2018, 72: 277
5 Zhang X D, Deng C Y, Wang D P, et al. Improving bonding quality of underwater friction stitch welds by selecting appropriate plug material and welding parameters and optimizing joint design [J]. Mater. Des., 2016, 91: 398
6 Seli H, Ismail A I, Rachman E, et al. Mechanical evaluation and thermal modelling of friction welding of mild steel and aluminium [J]. J. Mater. Process. Technol., 2010, 210: 1209
7 Hynes N R J, Nagaraj P, Palanichamy R, et al. Numerical simulation of heat flow in friction stud welding of dissimilar metals [J]. Arab. J. Sci. Eng., 2014, 39: 3217
8 Yao F. Development of key equipment for robot friction stud welding system [D]. Nanjing: Nanjing University of Science and Technology, 2016
8 姚峰. 机器人摩擦螺柱焊接系统关键装备设计与研究 [D]. 南京: 南京理工大学, 2016
9 Zhang H Y. Study on friction stud welding technology and device of steel stud & aluminum plate dissimilar material [D]. Nanjing: Nanjing University of Science and Technology, 2015
9 张惠芸. 钢螺柱—铝板异种材料摩擦螺柱焊工艺和装置研究 [D]. 南京: 南京理工大学, 2015
10 Zhou C K. Study on friction stud welding of dissimilar material aluminum plate/steel stud [D]. Nanjing: Nanjing University of Science and Technology, 2017
10 周传昆. 铝板—钢螺柱异种材料摩擦螺柱焊工艺研究 [D]. 南京: 南京理工大学, 2017
11 Cui L. Research on the application foundation of underwater friction hydro pillar processing and friction taper plug welding technologies for marine steels [D]. Tianjin: Tianjin University, 2014
11 崔雷. 海洋工程用钢水下等静压摩擦柱塞焊接技术应用基础研究 [D]. 天津: 天津大学, 2014
12 Xu Y G, Jiao X D, Zhou C F, et al. Influence of rotation speed on mechanical properties of friction stud welding joints [J]. Electric Weld. Mach., 2015, 45(2): 23
12 徐亚国, 焦向东, 周灿丰等. 旋转速度对摩擦螺柱焊接头力学性能的影响 [J]. 电焊机, 2015, 45(2): 23
13 Xu Y G, Jiao X D, Zhou C F, et al. Effect of welding environment on forming quality of friction stud welding [J]. Weld. Technol., 2015, 44(2): 61
13 徐亚国, 焦向东, 周灿丰等. 焊接环境对摩擦螺柱焊成形质量的影响 [J]. 焊接技术, 2015, 44(2): 61
14 Gu Y H, Ma H J, Gao H, et al. Microstructure and local corrosion behavior of friction stud welding of 16Mn steel [J]. J. Shanghai Jiaotong Univ., 2017, 51(11): 70
14 顾艳红, 马慧娟, 高辉等. 16Mn钢摩擦螺柱焊接头的微观组织与局部腐蚀 [J]. 上海交通大学学报, 2017, 51(11): 70
15 Ma H J, Gu Y H, Gao H, et al. Microstructure, chemical composition and local corrosion behavior of a friction stud welding joint [J]. J. Mater. Eng. Perform., 2018, 27: 666
[1] 阎竹, 张晨阳, 王立新, 袁国, 张元祥, 方烽, 王洋, 康健. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 79-84.
[2] 戈方宇, 黄峰, 袁玮, 肖虎, 刘静. 交变载荷频率对MS X65管线钢在H2S介质中腐蚀电化学行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[3] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[4] 刘栓, 赵霞, 陈长伟, 侯保荣, 陈建敏. 油田输油管线钢X65的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 393-399.
[5] 曹彩红 梁成浩 黄乃宝. 镀铌不锈钢双极板的电化学性能[J]. 中国腐蚀与防护学报, 2013, 33(2): 123-128.
[6] 郭海艳,朱君秋,邵艳群,唐电. 表面活性剂辅助制备钛阳极的电化学性能[J]. 中国腐蚀与防护学报, 2010, 30(6): 449-452.
[7] 梁叔全,张勇,官迪凯,谭小平,唐艳,毛志伟. 轧制温度对铝阳极Al-Mg-Sn-Bi-Ga-In组织和性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
[8] 马力,李威力,曾红杰,闫永贵,侯保荣. 低驱动电位Al-Ga合金牺牲阳极及其活化机制[J]. 中国腐蚀与防护学报, 2010, 30(4): 329-332.
[9] 俞芳 高克玮 路民旭. 流动状态下X65管线钢CO2腐蚀产物膜结构和力学性能的评价[J]. 中国腐蚀与防护学报, 2009, 29(6): 401-404.
[10] 侯军才; 关绍康; 任晨星; 徐河; 房中学; 赵彦学 . 微量锶对镁锰牺牲阳极显微组织和电化学性能的影响[J]. 中国腐蚀与防护学报, 2006, 26(3): 166-170 .