Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 93-98    DOI: 10.11902/1005.4537.2020.256
  研究报告 本期目录 | 过刊浏览 |
铜基超疏水表面的制备及其耐蚀性研究
尹续保, 李育桥, 高荣杰()
中国海洋大学材料科学与工程学院 青岛 266100
Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance
YIN Xubao, LI Yuqiao, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(5235 KB)   HTML
摘要: 

以十二硫醇作为疏水剂,采用化学刻蚀和高温氧化在铜基体上构造超疏水表面,以提高铜基体的耐蚀性。结果表明,当化学刻蚀8 min、高温氧化6 h、十二硫醇修饰15 min,基体表面形成了具有足够粗糙度并可以捕获大量空气的网状层叠结构,此时基体表面疏水性最好,水的接触角为165.50°。动电位极化曲线表明,超疏水表面的腐蚀速率明显降低,腐蚀电流密度由7.43×10-5下降至4.31×10-6 A·cm-2。电化学阻抗谱表明,超疏水表面的电荷转移电阻明显高于铜基体,说明其具耐蚀性相较于铜基体也得到了提高。与当前制备超疏水表面的方法相比,本方法具有廉价、简单、环保的特点。

关键词 化学刻蚀高温氧化十二硫醇超疏水表面耐蚀性    
Abstract

A super-hydrophobic surface is constructed on the Cu substrate by chemical etching, high-temperature oxidation and then modifying with 1-Dodecanethiol as hydrophobic agent, in order to improve the corrosion resistance of the Cu substrate. The results show that when chemical etching for 8 min, high temperature oxidation for 6 h, and 1-Dodecanethiol modification for 15 min, a net-like layered structure with sufficient roughness can form on the Cu surface, which can capture a large amount of air. At this time, the surface of the Cu substrate has the best hydrophobicity with a contact angle of 165.50° for water. The measured potentiodynamic polarization curve shows that in comparison with the bare Cu, the corrosion rate of the superhydrophobic surface is significantly reduced, and the corrosion current density drops from 7.43×10-5 A·cm-2 to 4.31×10-6 A·cm-2. The results of electrochemical impedance spectroscopy showed that the charge transfer resistance of the superhydrophobic surface was significantly higher than that of the bare Cu substrate, indicating that its corrosion resistance was obviously improved due to the presence of the superhydrophobic surface film. Compared with the current methods for preparing superhydrophobic surfaces, this method is cheaper, simpler and environmentally friendly.

Key wordschemical etching    high-temperature oxidation    1-Dodecanethiol    superhydrophobic surface    anti-corrosion
收稿日期: 2020-12-08     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金山东省联合基金(U1706221)
通讯作者: 高荣杰     E-mail: dmh206@ouc.edu.cn
Corresponding author: GAO Rongjie     E-mail: dmh206@ouc.edu.cn
作者简介: 尹续保,男,1995年出生,硕士生

引用本文:

尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
Xubao YIN, Yuqiao LI, Rongjie GAO. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 93-98.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.256      或      https://www.jcscp.org/CN/Y2022/V42/I1/93

图1  不同条件下处理后样品的表面形貌
图2  铜基体和超疏水表面的XRD谱
图3  十二硫醇修饰后样品表面EDS图谱
图4  超疏水表面和十二硫醇的红外图谱
图5  十二硫醇修饰后试样表面上水接触角的变化
图6  超疏水表面水的接触角及水在超疏水表面上的滚动
图7  铜基体、修饰前和修饰后样品的动电位极化曲线
SampleEcorr / VIcorr / A·cm-2
Copper-0.2967.43×10-5
Before modification-0.2211.51×10-5
Superhydrophobic surface-0.1874.31×10-6
表1  动电位极化曲线拟合参数
图8  不同试样的电化学阻抗谱的Nyquist图
SampleRsΩ·cm2CdlF·cm-2RctΩ·cm2CcF·cm-2RcΩ·cm2
Copper23.731.18×10-4748.3------
Before modification6.4982.16×10-5991.87.58×10-560.49
Superhydrophobic15.482.33×10-62431.41.59×10-689.76
表2  不同试样Nyquist图的电路拟合参数
图9  铜试样和超疏水试样的等效电路图
图10  超疏水试样浸泡不同时间后的Nyquist图

Immersion

time / d

RsΩ·cm2CdlF·cm-2RctΩ·cm2CcF·cm-2RcΩ·cm2
117.482.21×10-62380.77.98×10-6108.52
39.6348.47×10-62245.04.83×10-5129.48
56.4794.64×10-52187.89.65×10-5178.84
710.647.38×10-51977.49.87×10-5279.50
表3  超疏水试样在浸泡不同时间下的电化学阻抗Nyquist图的电路拟合参数
1 Jiang L. Nanostructured materials with superhydrophobic surface-from nature to biomimesis [J]. Chem. Ind. Eng. Prog., 2003, 22: 1258
1 江雷. 从自然到仿生的超疏水纳米界面材料 [J]. 化工进展, 2003, 22: 1258
2 Erbil H Y, Demirel A L, Avcı Y, et al. Transformation of a simple plastic into a superhydrophobic surface [J]. Science, 2003, 299: 1377
3 Wang H X, Xue Y H, Ding J, etal, Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane [J]. Angew. Chem. Int. Ed., 2011, 50: 11433
4 Cho K L, Liaw I I, Wu A H F, et al. Influence of roughness on a transparent superhydrophobic coating [J]. J. Phys. Chem. C, 2010, 114: 11228
5 Xiong D A, Liu G J, Duncan E J S. Diblock-copolymer-coated water-and oil-repellent cotton fabrics [J]. Langmuir, 2012, 28: 6911
6 Latthe S S, Sutar R S, Kodag V S, et al. Self-cleaning superhydrophobic coatings: Potential industrial applications [J]. Prog. Org. Coat., 2019, 128: 52
7 Li H, Yu S R, Hu J H, et al. Modifier-free fabrication of durable superhydrophobic electrodeposited Cu-Zn coating on steel substrate with self-cleaning, anti-corrosion and anti-scaling properties [J]. Appl. Surf. Sci., 2019, 481: 872
8 Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem., 1936, 28: 988
9 Xin Z, Zhang W F. Research progress of fabrication and application of superamphiphobic surface [J]. Chem. Ind. Eng. Prog., 2015, 34: 447
9 辛忠, 张雯斐. 超双疏表面的构筑及研究进展 [J]. 化工进展, 2015, 34: 447
10 Liu Y, Cao H J, Chen S G, et al. Ag nanoparticle-loaded hierarchical superamphiphobic surface on an Al substrate with enhanced anticorrosion and antibacterial properties [J]. J. Phys. Chem. C, 2015, 119: 25449
11 Yin K, Du H F, Luo Z, et al. Multifunctional Micro/Nano-patterned PTFE near-superamphiphobic surfaces achieved by a femtosecond laser [J]. Surf. Coat. Technol., 2018, 345: 53
12 Li P P, Chen X H, Yang G B, et al. Preparation of silver-cuprous oxide/stearic acid composite coating with superhydrophobicity on copper substrate and evaluation of its friction-reducing and anticorrosion abilities [J]. Appl. Surf. Sci., 2014, 289: 21
13 Peng N, Xu Q J, Liu W, et al. Study on the construction of the superhydrophobic surface on copper-nickel alloy and corrosion resistance [J]. J. Shanghai Univ. Electric Power, 2016, 32: 371
13 彭娜, 徐群杰, 刘伟等. 白铜超疏水表面的构建及耐蚀性能的研究 [J]. 上海电力学院学报, 2016, 32: 371
14 Li Z B, Hui S M, Yang J, et al. A facile strategy for the fabrication of superamphiphobic MoS2 film on steel substrates with excellent anti-corrosion property [J]. Mater. Lett., 2018, 229: 336
15 Zeng Y W, Qin Z L, Hua Q H, et al. Sheet-like superhydrophobic surfaces fabricated on copper as a barrier to corrosion in a simulated marine system [J]. Surf. Coat. Technol., 2019, 362: 62
16 Lv Z X, Yu S R, Song K X, et al. A two-step method fabricating a hierarchical leaf-like superamphiphobic PTFE/CuO coating on 6061Al [J]. Prog. Org. Coat., 2020, 147: 105723
17 Liu W, Xu Q J, Han J, et al. A novel combination approach for the preparation of superhydrophobic surface on copper and the consequent corrosion resistance [J]. Corros. Sci., 2016, 110: 105
18 Wan Y X, Chen M J, Liu W, et al. The research on preparation of superhydrophobic surfaces of pure copper by hydrothermal method and its corrosion resistance [J]. Electrochim. Acta, 2018, 270: 310
19 Lu J, Wu J Y. Review on research and application of Cu-Ni alloys [J]. Nonferrous Met. Mater. Eng., 2020, 41(3): 55
19 陆菁, 武家艳. 铜镍合金的研究及其应用综述 [J]. 有色金属材料与工程, 2020, 41(3): 55
20 Zhao J Y. Application of copper alloy with corrosion resistant and Anti-pollution for Ocean Circumstance [J]. Spec. Cast. Nonferrous Alloy., 2006, 26: 390
20 赵九夷. 我国海洋耐蚀防污铜合金研究及其应用 [J]. 特种铸造及有色合金, 2006, 26: 390
21 Yang Y Y, Ding Z W, Liu L Y. Fabrication of super-hydrophobic and super-oleophlic membranes and their separation of oil-water mixture [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci.), 2013, 40(): 23
21 杨洋洋, 丁忠伟, 刘丽英. 超疏水/超亲油膜的制备及其油水分离性能 [J]. 北京化工大学学报 (自然科学版), 2013, 40(): 23
22 Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans. Faraday Soc., 1944, 40: 546
23 Jiang X, Tian M M, Lei Y, et al. Fabrication and corrosion resistance of copper-based superhydrophobic surface [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2020, 48(4): 87
23 蒋翔, 田蒙蒙, 雷瑜等. 铜基超疏水表面的制备及防腐蚀特性 [J]. 华南理工大学学报 (自然科学版), 2020, 48(4): 87
24 Zhang F M, Zeng Z X, Wang G, et al. Fabrication and Anti-corrosion performance of superhydrophobic surface film on Q235 steel substrate [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 617
24 张方铭, 曾志翔, 王刚等. Q235钢超疏水表面制备及耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2016, 36: 617
25 Ren J D, Gao R J, Zhang Y, et al. Fabrication of amphiphobic surface of pipeline steel by acid etching and its anti-corrosion properties [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 233
25 任继栋, 高荣杰, 张宇等. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 233
[1] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[2] 周殿买, 姜磊, 王美婷, 梁洪嘉, 肖云龙, 郑黎, 于宝义. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[3] 刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[4] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[5] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[6] 吴林涛, 周泽华, 张欣, 杨光恒, 张凯城, 王光宇. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[7] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[8] 杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[9] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[10] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[11] 王东亮, 丁华平, 马云飞, 龚攀, 王新云. 非晶合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[12] 李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[13] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[14] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[15] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.