Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 51-59    DOI: 10.11902/1005.4537.2020.175
  研究报告 本期目录 | 过刊浏览 |
pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响
冉斗1,2, 孟惠民1, 刘星1,2, 李全德1,2,3(), 巩秀芳2,3, 倪荣2,3, 姜英2,3, 龚显龙2,3, 戴君2,3, 隆彬2,3()
1.北京科技大学 新材料技术研究院 北京 100083
2.长寿命高温材料国家重点实验室 德阳 618000
3.东方汽轮机有限公司 德阳 618000
Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions
RAN Dou1,2, MENG Huimin1, LIU Xing1,2, LI Quande1,2,3(), GONG Xiufang2,3, NI Rong2,3, JIANG Ying2,3, GONG Xianlong2,3, DAI Jun2,3, LONG Bin2,3()
1.Institute of Advance Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory of Long-life High Temperature Materials, Deyang 618000, China
3.Dongfang Turbine Co. , LTD. , Deyang 618000, China
全文: PDF(4871 KB)   HTML
摘要: 

通过开路电位、动电位极化、电化学阻抗谱、X射线光电子能谱 (XPS)、扫描电镜 (SEM) 等分析手段研究了酸性含氯溶液pH的变化对汽轮机末级叶片用钢14Cr12Ni3WMoV电化学腐蚀行为的影响。结果表明:随着酸性含氯溶液pH的减小,材料表面阻抗减小,腐蚀速率和点蚀敏感性均增大;点蚀发生时,pH的减小会导致蚀坑沿纵向的发展减缓,而在无明显均匀腐蚀时其沿径向的发展加快;当溶液pH5时,不锈钢钝化膜主要由Fe和Cr相应的氧化物和氢氧化物组成,pH2时,钝化膜主要由Cr的氢氧化物、氧化物和高价态Mo6+的相应化合物组成,含氯溶液pH的减小,会显著加速不锈钢钝化膜中Fe的溶解,从而钝化膜的稳定性降低,材料的耐蚀性下降。

关键词 电化学腐蚀不锈钢汽轮机叶片pH钝化膜点蚀    
Abstract

The effect of pH value on the electrochemical corrosion behavior of 14Cr12Ni3WMoV steel, which is often used for steam turbine final blade, in acidic chlorine-containing solutions was investigated by open circuit potential measurement, potentiodynamic polarization, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results show that with the decrease of pH value of acidic chlorine-containing solutions, the impedance of the steel surface decreases, while the corrosion rate and pitting sensitivity increase. When pitting occurs, the vertical growth of pits on the steel surface slowed down, while their lateral growth accelerated without obvious uniform corrosion. The passivation film of 14Cr12Ni3WMoV stainless steel is mainly composed of oxides and hydroxides of Fe and Cr in the solution of pH5, while the passivation film is mainly composed of hydroxides and oxides of Cr and corresponding compounds of high valence state Mo6+ in the solution of pH2. With the decrease in pH value of the acidic chlorine-containing solution, the dissolution of Fe in the passivation film on the steel is accelerated significantly, so that the stability of the passivation film decreases, thereby the corrosion resistance of the stainless steel decreases.

Key wordselectrochemistry corrosion    stainless steel    steam turbine blade    pH    passivation film    pitting corrosion
收稿日期: 2020-09-25     
ZTFLH:  TG172  
基金资助:四川省科技计划应用基础研究项目(2019YJ0699);长寿命高温材料国家重点实验室开放课题(DTCC28EE190230)
通讯作者: 李全德,隆彬     E-mail: quandelee@126.com;longbin@dongfang.com
Corresponding author: LI Quande,LONG Bin     E-mail: quandelee@126.com;longbin@dongfang.com
作者简介: 冉斗,男,1995年生,硕士生

引用本文:

冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
Dou RAN, Huimin MENG, Xing LIU, Quande LI, Xiufang GONG, Rong NI, Ying JIANG, Xianlong GONG, Jun DAI, Bin LONG. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 51-59.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.175      或      https://www.jcscp.org/CN/Y2021/V41/I1/51

图1  14Cr12Ni3WMoV不锈钢在不同pH下0.1 mol/L NaCl溶液中的开路电位
图2  14Cr12Ni3WMoV不锈钢在不同pH下0.1 mol/L NaCl溶液中电化学测试结果
pHEcorr vs SCE / VIcorr / A·cm-2Eb vs SCE / V
2-0.4413.42×10-6-0.052
3-0.5050.55×10-60.164
4-0.4220.38×10-60.198
5-0.3540.25×10-60.226
表1  14Cr12Ni3WMoV不锈钢在不同pH下0.1 mol/L NaCl溶液中电化学参数
图3  14Cr12Ni3WMoV不锈钢在不同pH下0.1 mol/L NaCl溶液中测得的电化学阻抗谱
图4  等效拟合电路
pHRs / Ω·cm2QfRf / Ω·cm2
Y0 / Ω-1·cm-2·Snn
272.16.91×10-40.851.36×104
373.21.63×10-40.851.65×105
472.61.76×10-40.862.62×105
574.73.97×10-50.941.16×106
表2  等效电路各参数值
图5  14Cr12Ni3WMoV不锈钢在不同pH下0.1 mol/L NaCl溶液中的腐蚀形貌及其三维形貌
图6  14Cr12Ni3WMoV不锈钢在不同pH下0.1 mol/L NaCl溶液中点蚀坑的深度和孔径
图7  14Cr12Ni3WMoV不锈钢在pH5的0.1 mol/L NaCl溶液中浸泡72 h后形成钝化膜的XPS谱
ElementPeakSpecies/binding energy
Fe2p3/2Fe/706.5 eV; FeO/709.9 eV; Fe3O4/708.2 eV; Fe2O3/711.5 eV; FeOOH/712 eV
Cr2p3/2Cr/573.8 eV; Cr2O3/576.0 eV; Cr(OH)3/577.0 eV; CrO3/578.3 eV
Mo3d5/2Mo/227.4 eV; Mo4+/228.8 eV; Mo6+/232.3 eV
3d3/2Mo/231.1 eV; Mo4+/234.2 eV;Mo6+/235.6 eV
W4f7/2W/31.0 eV; W6+/35.2 eV
4f5/2W/33.6 eV; W6+/37.4 eV
表3  钝化膜中主要组成物质的结合能
图8  14Cr12Ni3WMoV不锈钢在pH2的0.1 mol/L NaCl溶液中浸泡72 h后形成钝化膜的XPS谱
图9  14Cr12Ni3WMoV不锈钢在pH2和pH5的0.1 mol/L NaCl溶液中浸泡72 h后形成钝化膜的元素含量
1 Zhou J Y. Corrosion causes analysis and surface protection treatment of low-pressure final stage steam turbine blades [J]. New Technol. New Prod. China, 2009, (13): 112
1 周景云. 汽轮机低压末级叶片腐蚀原因分析及其表面防护处理 [J]. 中国新技术新产品, 2009, (13): 112
2 Wang F T, Wang N N, Chang L, et al. Corrosion characteristic of steam turbine blade 1Cr13 steel in simulated initial-condensate water [J]. Corros. Prot., 2018, 39: 489
2 王锋涛, 王娜娜, 常亮等. 汽轮机叶片用1Cr13钢在初凝水中的腐蚀特性 [J]. 腐蚀与防护, 2018, 39: 489
3 Hu P. Development of anti-erosion surface treatments used in last blades of steam turbine [J]. Surf. Technol., 2008, 37(6): 78
3 胡平. 汽轮机末级叶片表面防水蚀处理工艺及发展 [J]. 表面技术, 2008, 37(6): 78
4 Zhou W Y, Zhu Z X, Wang P, et al. Analysis on water-erosion of moving blade in low-pressure control stage of a steam turbine [J]. Corros. Prot. Petrochem. Ind., 2012, 29(6): 43
4 周文远, 朱正写, 王鹏等. 汽轮机低压调节级动叶片水蚀分析 [J]. 石油化工腐蚀与防护, 2012, 29(6): 43
5 Li H P. Fracture mechanism analysis of steam turbine blade [J]. Equip. Manuf. Technol., 2016, (6): 205
5 李海鹏. 汽轮机叶片断裂机理分析 [J]. 装备制造技术, 2016, (6): 205
6 Adnyana D N. Corrosion fatigue of a low-pressure steam turbine blade [J]. J. Fail. Anal. Prev., 2018, 18: 162
7 Katinić M, Kozak D, Gelo I, et al. Corrosion fatigue failure of steam turbine moving blades: A case study [J]. Eng. Fail. Anal., 2019, 106: 104136
8 Fu X X, Zhang M, Lu L L. Analysis on fracture reasons of steam turbine blades [J]. Phys. Test. Chem. Anal. (Part A: Phys. Test.), 2017, 53: 812
8 付星星, 张梅, 卢柳林. 汽轮机叶片断裂原因分析 [J]. 理化检验 (物理分册), 2017, 53: 812
9 Kim H. Crack evaluation of the fourth stage blade in a low-pressure steam turbine [J]. Eng. Fail. Anal., 2011, 18: 907
10 Zhang T, Tian F, He F X, et al. Failure analysis of low-pressure rotor blade of 300 mw steam turbine [J]. Inner Mongolia Electr. Power, 2014, 32(5): 41
10 张涛, 田峰, 贺飞雄等. 300 MW汽轮机低压转子动叶片断裂分析 [J]. 内蒙古电力技术, 2014, 32(5): 41
11 Stefanoni M, Angst U, Elsener B. Local electrochemistry of reinforcement steel-Distribution of open circuit and pitting potentials on steels with different surface condition [J]. Corros. Sci., 2015, 98: 610
12 Arjmand F, Zhang L F, Wang J M. Effect of temperature, chloride and dissolved oxygen concentration on the open circuit and transpassive potential values of 316L stainless steel at high-temperature pressurized water [J]. Nucl. Eng. Des., 2017, 322: 215
13 Rui J Q, Li J, Sun H D, et al. Influence of pH on the electrochemical bahavior of 00Cr15Ni7Mo2Cu2 supermartensitic stainless steel in 3.5%NaCl solutions [J]. Adv. Mater. Res., 2012, 581/582: 1058
14 Lodhi M J K, Deen K M, Haider W. Corrosion behavior of additively manufactured 316L stainless steel in acidic media [J]. Materialia, 2018, 2: 111
15 Wang Y F, Xie F Q. Corrosion behaviors of super 13Cr tubing steels in NaCl solution with different concentration [J]. Mater. Rev., 2018, 32: 2847
15 王毅飞, 谢发勤. 超级13Cr油管钢在不同浓度Cl介质中的腐蚀行为 [J]. 材料导报, 2018, 32: 2847
16 Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
16 王标, 杜楠, 张浩等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338
17 Ai Y J, Du N, Zhao Q, et al. Effect of temperature on initiation of metastable pits and geometric features of stable pits for 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 135
17 艾莹珺, 杜楠, 赵晴等. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 135
18 Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials [J]. Appl. Surf. Sci., 2017, 396: 144
19 Wang Z, Feng Z, Zhang L, et al. Current application and development trend in electrochemical measurement methods for the corrosion study of stainless steels [J]. Chin. J. Eng., 2020, 42: 549
19 王竹, 冯喆, 张雷等. 电化学方法在不锈钢腐蚀研究中的应用现状及发展趋势 [J]. 工程科学学报, 2020, 42: 549
20 Wang Z. Investigation of the corrosion behavior and passive film degradation for austenitic stainless steel in H2S-containing environment [D]. Beijing: University of Science and Technology Beijing, 2018
20 王竹. 奥氏体不锈钢在H2S环境下的腐蚀行为与钝化膜演化研究 [D]. 北京: 北京科技大学, 2018
21 Lv N X, Liu K P, Yin C X, et al. Effect of HCO3- on passivation and pitting behavior of super 13Cr martensitic stainless steel [J]. Surf. Technol., 2019, 48(5): 36
21 吕乃欣, 刘开平, 尹成先等. HCO3-对超级13Cr马氏体不锈钢钝化行为及点蚀行为的影响 [J]. 表面技术, 2019, 48(5): 36
22 Popova A, Sokolova E, Raicheva S, et al. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives [J]. Corros. Sci., 2003, 45: 33
23 Sun M, Xiao K, Dong C F, et al. Effect of pH on semiconducting property of passive film formed on Ultra-High-Strength Corrosion-Resistant steel in sulfuric acid solution [J]. Metall. Mater. Trans., 2013, 44A: 4709
24 Liu C T, Wu J K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2007, 49: 2198
25 Guo L Q, Lin M C, Qiao L J, et al. Duplex stainless steel passive film electrical properties studied by in situ current sensing atomic force microscopy [J]. Corros. Sci., 2014, 78: 55
26 Guo Q, Liu J H, Yu M, et al. Effect of passive film on mechanical properties of martensitic stainless steel 15-5PH in a neutral NaCl solution [J]. Appl. Surf. Sci., 2015, 327: 313
27 Fan X H, Yu Y, Zhang Z R, et al. Pitting and repassivation behavior of 316l austenitic stainless steel under different potentials [J]. Surf. Technol., 2020, 49(7): 287
27 樊学华, 于勇, 张子如等. 316L奥氏体不锈钢在不同电位下的点蚀和再钝化行为研究 [J]. 表面技术,2020, 49(7): 287
[1] 程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[2] 张文丽, 张振龙, 吴兆亮, 韩思柯, 崔中雨. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[3] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[4] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[5] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[6] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[7] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[8] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[9] 雷哲缘, 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对2002双相不锈钢点蚀萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[10] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[11] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[12] 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对双相不锈钢微区极化行为及点蚀抗性的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[13] 张龙华, 李长君, 潘磊, 韩思柯, 王昕, 崔中雨. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[14] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[15] 宫克, 吴明, 张胜. HCO3-对X90管线钢应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.